Corporate Banner
Satellite Banner
Mass Spectrometry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Research Point to Enzyme that Restores Function in Diabetic Kidney Disease

Published: Saturday, December 14, 2013
Last Updated: Sunday, December 15, 2013
Bookmark and Share
Data on recent kidney metabolomics findings discussed at the American Society of Nephrology Kidney Week Meeting.

ClinMet announced that researchers from The University of California, San Diego School of Medicine and colleagues have published new findings that could fundamentally change understanding of how diabetes-related diseases develop – and how they might be better treated. A prevailing theory suggests that mitochondrial function is overactive in diabetes and leads to complications such as kidney, eye, nerve and possibly cardiovascular disease. However, these new studies suggest that real-time production of superoxide – a marker of mitochondrial activity – is actually reduced, rather than elevated, in diabetic kidney disease and potentially other organs as well. Furthermore, stimulating mitochondrial production, function and superoxide levels led to improvement in diabetic kidney disease.

The new research, authored by UC San Diego professor and ClinMet scientific founder, Kumar Sharma, M.D., F.A.H.A (Director of the Center for Renal Translational Medicine, Division of Nephrology-Hypertension and the Institute of Metabolomic Medicine) and colleagues, was published online on October 25 in the Journal of Clinical Investigation. ClinMet has an exclusive license to use kidney metabolomics findings by Dr. Sharma and his team in drug development and other applications, based on patents filed by UC San Diego.

“These new data suggest that a major theory on the role of mitochondrial function in diabetic complications has to be questioned,” said Dr. Sharma. “In particular, our findings that an increase in mitochondrial function and superoxide production is associated with improvement in diabetic complications suggest that approaches to stimulate mitochondrial function may be beneficial as a new treatment for diabetic complications.”

“These key insights from a translational research perspective strongly support important concepts identified via metabolomics studies, as illustrated by Dr. Sharma’s publication earlier this month in the Journal of the American Society of Nephrology. They point to the utility of metabolomics technology, like that offered by ClinMet, to gain new insights about disease that can be further confirmed through translational animal studies,” commented Yesh Subramanian, President, Chief Executive Officer and co-founder of ClinMet.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
JPK NanoWizard® Applied to a Wide Range of Research
The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins.
New Centre Offers Ultra-Speed Protein Analysis
UW-Madison researchers to establish development centre for next-gen protein measurement technologies.
Determination of 13 Organic Toxicants in Human Blood
Researchers have utilised liquid-liquid extraction coupling HPLC-MS/MS to identify and quantify organic toxicants in human blood.
Accessing Metabolic Information with Mass Spec
Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples.
Unravelling the Roots of Insect’s Waterproof Coating
Researchers have identified the genes that control cuticular lipid production in Drosophila, by performing an RNAi screen and using Direct Analysis in Real Time and GC-MS.
Massive Helium Discovery a "Game Changer" for Medical Industry
A new development is gas exploration has yielded the discovery of a huge helium gas field, which could help relieve the dwindling supply.
Unidentified Spectra Detector
New algorithm clusters over 250 million spectra for analysis, such that millions of unidentified peptide sequences can be recognised.
Making Metabolite Identification More Efficient
Metasense combines the industry's most-comprehensive metabolic transformation prediction with efficient analysis of LC/MS analytical measurements to identify, visualize, and report chemical biotransformations.
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!