Corporate Banner
Satellite Banner
Mass Spectrometry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

University of Edinburgh Invests £1.2M in NMR and Mass Spectroscopy Instrumentation

Published: Friday, April 25, 2014
Last Updated: Friday, April 25, 2014
Bookmark and Share
‘Instantaneous’ turnover of samples will benefit research efforts.

The University of Edinburgh has made a £1.2 million investment in some of the world's most advanced Nuclear Magnetic Resonance (NMR) and Mass Spectroscopy instrumentation to further consolidate its position as a 'centre of excellence' for its acclaimed research in cutting-edge molecular science.

The investment, funded by Core Capability EPSRC (Engineering and Physical Sciences Research Council) and the University of Edinburgh, will support the installation of NMR and Mass Spectroscopy instrumentation, providing the chemical sciences industry with one of the most advanced facilities in Europe, capable of handling an array of molecular constituents, across a broad spectrum of chemical and proteomic sampling.

Moreover, it heralds a new frontier in NMR and Mass Spectroscopy by offering greater efficiencies - higher sensitivity, shorter measurement times, high throughput, better accuracy and superior characterization. For example, Throughputs by Ingenza, a biocatalyst and bioprocess development company, serving the pharmaceutical, food, fine chemical and biofuel industries, claims that the new NMR spectroscopy ‘provides an almost instantaneous turnover of samples which is a huge benefit to research efforts.’

Welcoming the investment, Professor Eleanor Campbell, Head of the School of Chemistry, University of Edinburgh said: “This latest investment in Nuclear Magnetic Resonance and Mass Spectroscopy further enhances our capability to support the chemical sciences and pharma communities.

We now provide full access to the latest analytical instruments and expertise, and I'm confident we'll see fruitful national and global collaboration, given the University of Edinburgh's historic legacy as a centre of excellence in this field and also for our students and researchers to take their expertise into the wider world.”

Edinburgh Research and Innovation (ERI), the commercialization arm of the University of Edinburgh, will look to develop commercial opportunities for the instrumentation. Stuart Duncan, ERI's Business Development Executive at the School of Chemistry comments: "This investment builds on our excellent track record in making our world class research base available to the wider chemical sciences community and on our ongoing collaboration and equipment-sharing with the University of St Andrews who have made a similar scale investment in complementary equipment. It will be of interest to many different businesses which need access to these important analytical techniques."

The investment has been warmly welcomed by Chemical Sciences Scotland, the partnership of industry with Scotland’s world-renowned academic sector and government agencies.

Its chairman, Sandy Dobbie, said: “Collaboration, in particular between industry and academia, is a key component if we are to grow Scotland’s chemical sciences sector. Today’s announcement is another great example of how Scotland’s academic sector is helping to support research within industry to improve manufacturing processes and develop new products.”

Head of chemical sciences at Scottish Enterprise, Caroline Strain, added: “Encouraging higher levels of innovation amongst our chemical sciences companies is a key priority for us, particularly as we strive to become leading players in sustainable manufacturing. I welcome today’s announcement by the University of Edinburgh, and we will continue to work closely with them to help realize our collective ambitions.”

NMR is a sophisticated and powerful analytical technology that is used by many disciplines of scientific research, medicine and industry. NMR delivers structural determination and identification of a range of materials including small organic/inorganic molecules, steroids, antibiotics, carbohydrates, lipids, polypeptides, proteins, nucleic acids and complex mixtures.

Mass Spectrometry, too, is a powerful analytical tool which can help to answer a wide range of biological and chemical questions.

For example, the identification and characterization of proteins - of interest to researchers involved in the discovery of new therapeutic targets and to the biopharmaceutical industry for the characterization of new potential products.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
ASMS 2016: Targeting Mass Spectrometry Tools for the Masses
The expanding application range of MS in life sciences, food, energy, and health sciences research was highlighted at this year's ASMS meeting in San Antonio, Texas.
Making Metabolite Identification More Efficient
Metasense combines the industry's most-comprehensive metabolic transformation prediction with efficient analysis of LC/MS analytical measurements to identify, visualize, and report chemical biotransformations.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
A New Tool Brings Personalized Medicine Closer
Scientists from EPFL and ETHZ have developed a powerful tool for exploring and determining the inherent biological differences between individuals, which overcomes a major hurdle for personalized medicine.
Rapid Retrieval of Live, Infectious Pathogens from Clinical Samples
An engineered pathogen-binding protein enables rapid isolation of infectious bacteria from joint fluids and accelerates their identification.
Getting a Better Look at How HIV Infects and Takes Over its Host Cells
A new approach, developed by a team of researchers led by The Rockefeller University and The Aaron Diamond AIDS Research Center (ADARC), offers an unprecedented view of how a virus infects and appropriates a host cell, step by step.
Detecting Fake Parmesan Cheeses
Scientists report on a way to catch adulteration of the regional artisanal products.
The Need for Speed
Evaluating MALDI-TOF as a high-throughput screening technology for the pharmaceutical industry.
Process Analysis in Real Time
With a real-time mass spectrometer developed by Fraunhofer researchers, it has become possible for the first time to analyze up to 30 components simultaneously from the gas phase and a liquid, including in-situ analysis.
Triple-Negative Breast Cancer Target Is Found
Researchers at UC Berkeley discover a target that drives cancer metabolism in triple-negative breast cancer.
Scroll Up
Scroll Down
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!