Corporate Banner
Satellite Banner
Mass Spectrometry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

University of Edinburgh Invests £1.2M in NMR and Mass Spectroscopy Instrumentation

Published: Friday, April 25, 2014
Last Updated: Friday, April 25, 2014
Bookmark and Share
‘Instantaneous’ turnover of samples will benefit research efforts.

The University of Edinburgh has made a £1.2 million investment in some of the world's most advanced Nuclear Magnetic Resonance (NMR) and Mass Spectroscopy instrumentation to further consolidate its position as a 'centre of excellence' for its acclaimed research in cutting-edge molecular science.

The investment, funded by Core Capability EPSRC (Engineering and Physical Sciences Research Council) and the University of Edinburgh, will support the installation of NMR and Mass Spectroscopy instrumentation, providing the chemical sciences industry with one of the most advanced facilities in Europe, capable of handling an array of molecular constituents, across a broad spectrum of chemical and proteomic sampling.

Moreover, it heralds a new frontier in NMR and Mass Spectroscopy by offering greater efficiencies - higher sensitivity, shorter measurement times, high throughput, better accuracy and superior characterization. For example, Throughputs by Ingenza, a biocatalyst and bioprocess development company, serving the pharmaceutical, food, fine chemical and biofuel industries, claims that the new NMR spectroscopy ‘provides an almost instantaneous turnover of samples which is a huge benefit to research efforts.’

Welcoming the investment, Professor Eleanor Campbell, Head of the School of Chemistry, University of Edinburgh said: “This latest investment in Nuclear Magnetic Resonance and Mass Spectroscopy further enhances our capability to support the chemical sciences and pharma communities.

We now provide full access to the latest analytical instruments and expertise, and I'm confident we'll see fruitful national and global collaboration, given the University of Edinburgh's historic legacy as a centre of excellence in this field and also for our students and researchers to take their expertise into the wider world.”

Edinburgh Research and Innovation (ERI), the commercialization arm of the University of Edinburgh, will look to develop commercial opportunities for the instrumentation. Stuart Duncan, ERI's Business Development Executive at the School of Chemistry comments: "This investment builds on our excellent track record in making our world class research base available to the wider chemical sciences community and on our ongoing collaboration and equipment-sharing with the University of St Andrews who have made a similar scale investment in complementary equipment. It will be of interest to many different businesses which need access to these important analytical techniques."

The investment has been warmly welcomed by Chemical Sciences Scotland, the partnership of industry with Scotland’s world-renowned academic sector and government agencies.

Its chairman, Sandy Dobbie, said: “Collaboration, in particular between industry and academia, is a key component if we are to grow Scotland’s chemical sciences sector. Today’s announcement is another great example of how Scotland’s academic sector is helping to support research within industry to improve manufacturing processes and develop new products.”

Head of chemical sciences at Scottish Enterprise, Caroline Strain, added: “Encouraging higher levels of innovation amongst our chemical sciences companies is a key priority for us, particularly as we strive to become leading players in sustainable manufacturing. I welcome today’s announcement by the University of Edinburgh, and we will continue to work closely with them to help realize our collective ambitions.”

NMR is a sophisticated and powerful analytical technology that is used by many disciplines of scientific research, medicine and industry. NMR delivers structural determination and identification of a range of materials including small organic/inorganic molecules, steroids, antibiotics, carbohydrates, lipids, polypeptides, proteins, nucleic acids and complex mixtures.

Mass Spectrometry, too, is a powerful analytical tool which can help to answer a wide range of biological and chemical questions.

For example, the identification and characterization of proteins - of interest to researchers involved in the discovery of new therapeutic targets and to the biopharmaceutical industry for the characterization of new potential products.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Could a simple saliva test detect Alzheimer's?
Researchers have presented findings suggesting that a simple, non-invasive diagnostic for Alzheimer's could be within reach.
Facebook for the Proteome
Researchers have developed a network for describing protein-protein interactions that can then be used to examine protein interactions that may have biological or clinical significance.
Researchers Reveal Elusive Molecule
A long-standing chemistry puzzle has been solved, with potential implications ranging from industrial processes to atmospheric chemistry.
‘Atomic Detectives’ Scientists that Keep us Safe from Radioactive Criminality
Stephan Richter from the JRC-Institute for Reference Materials and Measurements has examined the merits and limitations of available mass spectrometric instrumentations for nuclear safeguards applications.
MSU Scientists Uncover a ‘Funky Cofactor’
While examining the chemical reactions of bacterial cells in a lab at Michigan State University, researchers found an unusually complex molecule in a protein that completes a simple process.
Aluminum Clusters Shut Down Molecular Fuel Factory
3-D images give clues to extending catalyst life.
Chemists Design a Quantum-Dot Spectrometer
New instrument is small enough to function within a smartphone, enabling portable light analysis.
Creating Bacterial ‘Fight Clubs’ to Discover New Drugs
Creating bacterial “fight clubs” is an effective way to find new drugs from natural sources.
Informatics Tool Helps Scientists Prioritize Protein Modification Research
Researchers have developed a new informatics technology that analyzes existing data repositories of protein modifications and 3D protein structures to help scientists identify and target research on "hotspots" most likely to be important for biological function.
Iron: A Biological Element?
Study shows findings which have meaning for fields as diverse as mining and the search for life in space.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!