Corporate Banner
Satellite Banner
Mass Spectrometry
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH Grant for Texas Biomed to Perform Mass Spec-Based Studies into Heart Disease

Published: Wednesday, August 20, 2014
Last Updated: Wednesday, August 20, 2014
Bookmark and Share
Institute awarded $2.7M grant from the NIH to fund innovative approaches to genetics research for the development of new therapies for heart disease and other conditions.

The research builds on genetic studies conducted over the past decade by scientists around the world and at Texas Biomed that have helped identify large numbers of differences in the sequence of the human genome that are contributing to a wide range of diseases.  The challenge that remains is understanding how these changes in the DNA sequence specifically affect the cells in the body, and lead to obesity, diabetes, heart disease or even neurological disorders such as Parkinson’s disease. Once scientists understand the underlying mechanisms, they may be able to develop new therapies and actually improve treatment for these diseases.

To accelerate this process, the National Institute for General Medical Sciences (NIGMS) of the National Institutes of Health requested proposals from researchers to develop novel and innovative approaches that will help decipher the function of these specific genome sequence changes, and now awarded Michael Olivier, Ph.D., Texas Biomed’s newest recruit to the Department of Genetics, a new 4-year grant to develop and implement such technologies. His laboratory specifically focuses on developing new ways to study how proteins – little machines in cells that do everything, from producing energy to sending signals to other cells to recognizing and responding to challenges such as fat in the diet – interact with the DNA in our cells to regulate the expression of genes.

Genes can be turned on or off, depending on whether a cell needs more or less of a specific protein, and this complex regulation is influenced by a large number of other proteins that bind to the DNA and regulate it. These regulatory proteins bind to specific sequences in the DNA, and if this sequence is changed in an individual, that particular protein may no longer bind as efficiently. The result is that a nearby gene is regulated differently in a person with this specific change in the DNA sequence.

“Obviously, this complex regulation of genes requires a large number of different proteins, and many of them we do not even know yet,” Olivier said. “This is why we are trying to develop a method that allows us to look at one specific piece of DNA, such as one gene, and to identify all the proteins that are bound to that particular sequence.”

Once the sequence has been isolated, the bound proteins can be identified by mass spectrometry. In collaboration with Joanne Curran, Ph.D., Harald Göring, Ph.D., and John Blangero, Ph.D., in the Texas Biomed Department of Genetics, and Dr. Lloyd Smith, Professor of Chemistry and Director of the Wisconsin Genome Center at the University of Wisconsin, Madison, Dr. Olivier will exploit this new methodology to examine cells from members of the San Antonio Family Study. Here, they will identify proteins that regulate genes important in the regulation of cholesterol and other risk factors for heart disease.

Previous studies have helped identify changes in the DNA sequence of study participants that raise their cholesterol levels, which increases their risk for heart attacks or strokes. This new study will now identify how these sequence changes modify the regulation of specific genes, and which proteins are important in that regulation.

“Identifying the proteins that are important for this regulation of genes will not only help us understand how these sequence changes lead to higher cholesterol levels in these participants, it will also help us to identify new drugs that may help correct these changes, and help reduce the risk for a heart attack or stroke,” Olivier said.

For now, however, his lab is focusing on developing the necessary protocols and methods so that they can begin these investigations – a challenging effort requiring a wide range of expertise in his group, from chemistry to genetics to cell and molecular biology. And with the new support from the NIH, they hope to be able to develop and apply these new methodologies quickly so that they can be used to help understand how the human genome works, and how the sequence differences in it affect disease risk.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
High Throughput Mass Spectrometry-Based Screening Assay Trends
Dr John Comley provides an insight into HT MS-based screening with a focus on future user requirements and preferences.
New Method Identifies Up to Twice as Many Proteins and Peptides
An international team of researchers developed a method that identifies up to twice as many proteins and peptides in mass spectrometry data than conventional approaches.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Acetaldehyde and Formaldehyde Content in Foods
Korean researchers have determined the content of the toxic and carcinogenic aldehydes, acetaldehyde and formaldehyde, in a variety of food groups.
Combining the Power of Mass Spectrometry & Microscopy
A tool that provides world-class microscopy and spatially resolved chemical analysis shows considerable promise for advancing a number of areas of study, including chemical science, pharmaceutical development and disease progression.
Increasing Vitamin D Supplementation
New study from ETH Zurich finds that elderly women should consume more vitamin D than previously recommended during the winter months.
Advancing Lithium-Ion Battery Research
The increasing number of components in a lithium-ion battery makes it essential to use a variety of analytical methods to attain complete characterization.
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Fruit Fly Pheromone Flags Great Real Estate for Starting a Family
Finding could aid efforts to control mosquito-borne diseases like malaria by manipulating odorants
Education and Expense: The Barriers to Mass Spectrometry in Clinical Laboratories?
Here we examine the perceived barriers to mass spec in clinical laboratories and explore the possible drivers behind the recent shift in uptake of the technology in clinical settings.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos