Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Neighbors Help Cancer Cells Resist Treatment

Published: Wednesday, July 25, 2012
Last Updated: Wednesday, July 25, 2012
Bookmark and Share
New study reveals that surrounding cells help tumors develop resistance to drugs.

A new study shows that surrounding cells can help tumors develop resistance to drugs. The finding may change the way researchers approach the treatment of many cancers.

Drugs designed to target unique tumor proteins hold great promise for cancer treatment. However, many tumors become resistant to treatment over time.

For example, deadly skin cancers called melanomas often harbor a mutant form of a gene known as BRAF.

Although these particular tumors initially respond well to a class of drugs called RAF inhibitors, in many cases the treatment is only partly successful, and the tumors later recur within 6 months.

A research team led by Dr. Todd Golub at the Broad Institute and the Dana-Farber Cancer Institute set out to explore factors in the tumor's environment that might play a role in drug resistance.

They developed a co-culture system in which tumor cells are grown in the laboratory along with stromal cells-cells from the tissue that surrounds tumors. They then tested the ability of the stromal cells to affect drug sensitivity.

The researchers cultured 45 human cancer cell lines either alone or in combination with a panel of about 2 dozen human stromal cell lines. They then tested increasing doses of 35 widely used anticancer drugs, including 23 targeted drugs.

Their work was funded partly by NIH's National Cancer Institute (NCI). Results appeared in the early online edition of Nature on July 4, 2012.

The scientists found that anticancer drugs were often less effective when the tumor cells were cultured along with stromal cells. Significantly, stromal cells led to increased resistance to 15 of the 23 targeted drugs (65%).

The team next explored how stromal cells affected tumor resistance to a RAF inhibitor called PLX4720. A similar compound, vemurafenib, was recently approved by the FDA for treating BRAF-mutant melanoma.

By testing the growth media of the stromal cells, the scientists discovered that the cells released a compound called hepatocyte growth factor (HGF), which helped the tumor cells become resistant.

Further experiments revealed the pathway that allowed the tumor cells to resist the RAF inhibitor. Among their findings was that HGF activated a tumor cell receptor called MET.

The researchers asked whether HGF plays a role in patients with BRAF-mutant melanoma. They examined biopsy samples obtained immediately before treatment and found HGF in stromal cells from 23 of 34 patients (68%).

They also found that patients whose stromal cells secreted HGF had a significantly poorer response to treatment.

The scientists uncovered a similar resistance mechanism in BRAF-mutant colorectal and glioblastoma cell lines.

They also discovered that they could reverse drug resistance in the BRAF-mutant melanoma cell lines by inhibiting RAF plus either HGF or MET.

This finding suggests a potential therapeutic strategy. The researchers note that several inhibitors of HGF or MET are currently in clinical development.

“Historically, researchers would go to great lengths to pluck out tumor cells from a sample and discard the rest of the tissue,” Golub says. “But what we're finding now is that those non-tumor cells that make up the microenvironment may be an important source of drug resistance.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
NIH-funded Memory Drug Moves into Phase 1 Clinical Study
Collaboration between NIH and Tetra Discovery Partners leads to development of treatment that may affect cognition.
Monday, January 04, 2016
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Allergy Drug Inhibits Hepatitis C in Mice
NIH study suggests alternative drug to treat virus.
Friday, April 10, 2015
Barrier-Breaking Drug May Lead to Spinal Cord Injury Treatments
NIH-funded scientists take first step towards developing promising new drug.
Thursday, December 04, 2014
Two Drugs are No More Effective Than One to Treat Common Kidney Disease
NIH study finds limited kidney benefit from more rigorous blood pressure treatment.
Saturday, November 29, 2014
New Drug for Common Liver Disease Improves Liver Health
An experimental drug aimed at treating a common liver disease showed promising results and potential problems in a multicenter clinical trial funded by the NIH.
Monday, November 10, 2014
First Drug Candidate from NIH Program Acquired by Baxter
Potential treatment targets sickle cell disease.
Tuesday, July 15, 2014
Drug Does Not Improve Set of Cardiovascular Outcomes for Diastolic Heart Failure
NIH-supported study finds drug does appear to reduce hospitalizations for diastolic heart failure.
Tuesday, April 15, 2014
NIH, Industry and Non-Profits Join Forces to Speed Validation of Disease Targets
Goal is to develop new treatments earlier, beginning with Alzheimer's, type 2 diabetes, and autoimmune disorders.
Tuesday, February 11, 2014
Tobacco, Drug Use in Pregnancy Can Double Risk of Stillbirth
NIH network study documents elevated risk associated with marijuana, other substances.
Tuesday, December 24, 2013
Exploring Structure-Activity Data Using the Landscape Paradigm
Structure-activity relationships represent a core aspect of medicinal chemistry.
Friday, November 08, 2013
NIH Launches Trial for Rare Degenerative Muscle Disease Treatment
Clinical trial to evaluate the drug candidate DEX-M74 as a treatment for HIBM.
Tuesday, September 25, 2012
NIH Researchers Implicate Unique Cell Type in Multiple Sclerosis
Study reveals new effects of the investigational MS drug daclizumab.
Friday, August 03, 2012
Scientific News
Spero Therapeutics Announces $30 Million Series B Preferred Financing
Company has announced financing of $30 million to support development of novel therapies to treat gram-negative bacterial infections.
Keeping Tumor Growth at Bay
Engineers at Washington University in St. Louis found a way to keep a cancerous tumor from growing by using nanoparticles of the main ingredient in common antacid tablets.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Faster Drug Discovery?
Startup develops more cost-effective test for assessing how cells respond to chemicals.
New Mechanism of Antitumor Action Identified
A team of UAB researchers and collaborators from the Catalan biotech company Ability Pharmaceuticals (UAB Research Park), have described a new mechanism of anti-tumour action, identified during the study and development of the new drug ABTL0812.
Nanoparticles Deliver Tumor Suppressors to Damaged Livers
UT Southwestern Medical Center chemists have successfully used synthetic nanoparticles to deliver tumor-suppressing therapies to diseased livers with cancer, an important hurdle scientists have been struggling to conquer.
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
A New Type of Anticancer Agent
Success in the development of a ?-tubulin specific inhibitor.
Nanoparticles Proven Effective Against Antibiotic-Resistant “Superbugs”
In the ever-escalating evolutionary battle with drug-resistant bacteria, humans may soon have a leg up thanks to adaptive, light-activated nanotherapy developed by researchers at the University of Colorado Boulder.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!