Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Seven Steps to ‘Billion Dollar’ Drugs

Published: Tuesday, August 21, 2012
Last Updated: Tuesday, August 21, 2012
Bookmark and Share
The methodology described should make it easier to discover new biologically active prostaglandin analogues.

A highly efficient method for making prostaglandins - natural, hormone-like chemicals that have pharmaceutical applications - is reported by University of Bristol scientists this week in Nature.

Some synthetic analogues of prostaglandin are ‘billion dollar’ drugs; the prostaglandin analogue latanoprost, which is used to treat glaucoma and ocular hypertension, generates approximately $1.6 billion in sales each year.

Prostaglandins are some of the most important molecules in biology and medicine as they regulate a broad range of activities in the body, including blood circulation, digestion and reproduction.

The breadth of biological activity, coupled with their challenging molecular architecture has made prostaglandins popular targets in synthesis for over 40 years.

However, since these molecules cannot be isolated from natural sources in sufficient quantities, they have to be synthesized, but routes are lengthy.

For example, the current synthesis of latanoprost requires 20 steps and uses the methodology and strategy developed by E. J. Corey, a giant in the area of synthesis (he was awarded the Nobel Prize in Chemistry, in 1990 "for his development of the theory and methodology of organic synthesis").

Until now, despite huge synthetic effort in industry and academia, advances in the synthesis of prostaglandins since Corey’s contributions have been limited.

Professor Varinder Aggarwal, who led the research at the University’s School of Chemistry, and colleagues now report a concise synthesis of prostaglandin PGF2a, which relies on the use of an organocatalyst, a small organic molecule, to catalyze a key step in the process.

The key step not only produces a key intermediate, but it also does so with exquisite control over relative and absolute stereochemistry.

The new process uses a new disconnection which has enabled them to complete the synthesis in just seven steps. It should be possible to modify the authors’ synthetic route to obtain other known prostaglandin-based drugs, e.g. latanaprost in a more cost-effective manner and to make it easier to discover new biologically active prostaglandin analogues.

In a follow-up patent, the authors have described the application of this technology to a simple synthesis of prostaglandin-based drugs, e.g. latanoprost and bimataprost.

The methodology should now make it easier to discover new biologically active prostaglandin analogues. It is a major advance and represents a step change in the synthesis of this important class of compounds.

Professor Aggarwal said: "Despite the long syntheses and the resulting huge effort that is required for the preparation of these molecules, they are still used in the clinic, because of their important biological activity.

"Being able to make complex pharmaceuticals in a shorter number of steps and therefore more effectively, would mean that many more people could be treated for the same cost."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Alzheimer’s to Benefit from Landmark MRC-AstraZeneca Compound Collaboration
A study to investigate Alzheimer’s disease led by scientists at the University of Bristol has been awarded funding by the Medical Research Council (MRC).
Tuesday, November 06, 2012
Scientific News
Combining Chemotherapy With Immune-Blocking Drug Could Stop Cancer Growing Back
Giving patients a drug that blocks part of the immune system from going into overdrive might help prevent cancer coming back in some people.
Researchers Pioneer Use of Capsules to Save Materials
Wax capsule delivery systems can simplify a wide range of chemistry transformations.
Photoredox Catalyst Unlocks New Pathways for Nickel Chemistry
Using a light-activated catalyst, researchers have unlocked a new pathway in nickel chemistry to construct carbon-oxygen (C-O) bonds that would be highly valuable to pharmaceutical and agrochemical industries.
Scientists Determine How Antibiotic Gains Cancer-Killing Sulfur Atoms
In a discovery with implications for future drug design scientists have shown an unprecedented mechanism for how a natural antibiotic with antitumor properties incorporates sulfur into its molecular structure, an essential ingredient of its antitumor activity.
Familiar Drugs May Block Ebola Virus Infection
A well-known class of molecules, many of which are already in use therapeutically, may be able to block the Ebola virus’s entry into cells and halt the disease in its tracks, according to researchers at the University of Illinois at Chicago.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Common Class of ‘Channel Blocking’ Drugs May Find a Role in Cancer Therapy
Discoveries in fruit flies prompt unusual treatment of patient with metastatic disease.
Common Medications Could Delay Brain Injury Recovery
Drugs used to treat common complaints could delay the recovery of brain injury patients according to research by University of East Anglia (UEA) and University of Aberdeen scientists, published today in Brain Injury.
Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
New Clot-Busting Treatments Target Number One Killer
Australian researchers funded by the National Heart Foundation are a step closer to a safer and more effective way to treat heart attack and stroke via nanotechnology.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!