Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Seven Steps to ‘Billion Dollar’ Drugs

Published: Tuesday, August 21, 2012
Last Updated: Tuesday, August 21, 2012
Bookmark and Share
The methodology described should make it easier to discover new biologically active prostaglandin analogues.

A highly efficient method for making prostaglandins - natural, hormone-like chemicals that have pharmaceutical applications - is reported by University of Bristol scientists this week in Nature.

Some synthetic analogues of prostaglandin are ‘billion dollar’ drugs; the prostaglandin analogue latanoprost, which is used to treat glaucoma and ocular hypertension, generates approximately $1.6 billion in sales each year.

Prostaglandins are some of the most important molecules in biology and medicine as they regulate a broad range of activities in the body, including blood circulation, digestion and reproduction.

The breadth of biological activity, coupled with their challenging molecular architecture has made prostaglandins popular targets in synthesis for over 40 years.

However, since these molecules cannot be isolated from natural sources in sufficient quantities, they have to be synthesized, but routes are lengthy.

For example, the current synthesis of latanoprost requires 20 steps and uses the methodology and strategy developed by E. J. Corey, a giant in the area of synthesis (he was awarded the Nobel Prize in Chemistry, in 1990 "for his development of the theory and methodology of organic synthesis").

Until now, despite huge synthetic effort in industry and academia, advances in the synthesis of prostaglandins since Corey’s contributions have been limited.

Professor Varinder Aggarwal, who led the research at the University’s School of Chemistry, and colleagues now report a concise synthesis of prostaglandin PGF2a, which relies on the use of an organocatalyst, a small organic molecule, to catalyze a key step in the process.

The key step not only produces a key intermediate, but it also does so with exquisite control over relative and absolute stereochemistry.

The new process uses a new disconnection which has enabled them to complete the synthesis in just seven steps. It should be possible to modify the authors’ synthetic route to obtain other known prostaglandin-based drugs, e.g. latanaprost in a more cost-effective manner and to make it easier to discover new biologically active prostaglandin analogues.

In a follow-up patent, the authors have described the application of this technology to a simple synthesis of prostaglandin-based drugs, e.g. latanoprost and bimataprost.

The methodology should now make it easier to discover new biologically active prostaglandin analogues. It is a major advance and represents a step change in the synthesis of this important class of compounds.

Professor Aggarwal said: "Despite the long syntheses and the resulting huge effort that is required for the preparation of these molecules, they are still used in the clinic, because of their important biological activity.

"Being able to make complex pharmaceuticals in a shorter number of steps and therefore more effectively, would mean that many more people could be treated for the same cost."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Alzheimer’s to Benefit from Landmark MRC-AstraZeneca Compound Collaboration
A study to investigate Alzheimer’s disease led by scientists at the University of Bristol has been awarded funding by the Medical Research Council (MRC).
Tuesday, November 06, 2012
Scientific News
Designing Drugs with a Whole New Toolbox
Researchers develop methods to design small, targeted proteins with shapes not found in nature.
Small Molecules Lead to a Big Change in Reaction Outcomes
Scientists have changed the behaviour of a group of molecules involved in carbon-oxygen bond synthesis.
Targeting Fat to Treat Cancer
Researchers develop novel cancer treatment that halts fat synthesis in cells, stunting tumors.
Hyperstable Peptides for 'On-Demand' Drugs
These small molecules can fold into different conformations that could allow for greater flexibility in precision drug design
Drug Leads Identified to Combat Heart Disease
Using three supercomputers, researchers surveyed protein structures through accelerated molecular dynamics.
Accelerating the Path to Molecules for Medicine
Researchers convert carbon-hydrogen bonds into nitriles - converting organic molecules into components of medicines.
New Hope for Zika Treatment Found in Large-Scale Screen of Existing Drugs
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection
Game Changing Antibacterial Drug Research
Researchers publish report on the synthesis of a newly discovered “game-changing” antibiotic, Teixobactin.
New Way of Displaying 3D Molecular Structures
Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples.
Agent Blocks Pain Without Morphine's Side Effects
Scientists have synthesised a molecule with specific pain-relief properties and has shown its efficacy in mice.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!