Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Launches Trial for Rare Degenerative Muscle Disease Treatment

Published: Tuesday, September 25, 2012
Last Updated: Tuesday, September 25, 2012
Bookmark and Share
Clinical trial to evaluate the drug candidate DEX-M74 as a treatment for HIBM.

Researchers have launched a clinical trial to evaluate the drug candidate DEX-M74 as a treatment for a rare degenerative muscle disease, hereditary inclusion body myopathy (HIBM).

National Institutes of Health scientists from the National Center for Advancing Translational Sciences (NCATS) and the National Human Genome Research Institute (NHGRI) will conduct the clinical trial at the NIH Clinical Center.

HIBM, also known as GNE myopathy, has no available therapy. Disease symptoms emerge in adulthood and slowly lead to progressive muscle weakness.

Most patients develop symptoms in their early 20s and eventually require a wheelchair as their arm, hand and leg muscles weaken. Mutations in the GNE gene cause HIBM by producing low sialic acid levels in muscle proteins, which scientists think contributes to the symptoms of muscle weakness.

Normally, GNE produces an enzyme that produces sialic acid, a sugar important to muscle development and kidney function.

"This study marks an important milestone toward developing a treatment for an underserved patient population, and we would not be this far along had it not been for the teamwork and dedication of the researchers working on this collaboration," said Christopher P. Austin, M.D., the newly appointed NCATS director.

In 2007, Marjan Huizing, Ph.D., an associate investigator in NHGRI's Medical Genetics Branch, led a team of scientists in search of an HIBM treatment.

They hypothesized that a compound called ManNAc, now called DEX-M74, might improve the low sialic acid levels that cause HIBM. DEX-M74 is a sugar that the body converts to sialic acid.

Huizing and colleagues conducted studies that showed the compound was effective in controlling sialic acid levels in a mouse model with a specific GNE mutation. The researchers published their findings in the June 2007 issue of the Journal of Clinical Investigation.

Based on these results, they set out to evaluate the effects of DEX-M74 on progressive muscle weakness in HIBM patients. However, the project required additional funding for pre-clinical studies.

In 2009, NIH established its Therapeutics for Rare and Neglected Diseases (TRND) program, now part of NCATS, to facilitate the pre-clinical development of new drugs for these ailments. TRND scientists selected the development of DEX-M74 as a treatment for HIBM as one of its initial pilot projects.

The collaboration includes TRND researchers, the laboratories of Marjan Huizing, Ph.D., and of William A. Gahl, M.D, Ph.D., principal investigator of NHGRI's Medical Genetics Branch, and New Zealand Pharmaceuticals Limited (NZP).

NZP is manufacturing DEX-M74, which was developed by Drs. Gahl and Huizing and licensed from the NIH by NZP.

"TRND infused life into the HIBM project by supporting pre-clinical studies for the investigational new drug application," said Dr. Gahl, who also serves as NHGRI clinical director. "The program provides the missing link in the evolution of drug treatments. It is a resource that has the potential to develop new therapeutics for rare diseases, often with applicability to common disorders."

During the HIBM project, the TRND program has supported toxicology studies to evaluate the safety of DEX-M74. Researchers also generated chemistry manufacturing and controls data, which relate to the formulation and manufacturing process of a drug.

Based on the availability of these new data, the collaborators completed an IND application that the U.S. Food and Drug Administration recently allowed to go into effect.

"The TRND program was designed to provide the expertise and knowledge needed to advance potential treatments like DEX-M74 to human clinical trials," said John McKew, Ph.D., chief of the NCATS Therapeutic Development Branch and director of TRND.

McKew continued, "The results of this project demonstrate what a translational program like TRND can accomplish through collaborations that bring experts together from basic research, pre-clinical drug development, and clinical medicine."

The HIBM Phase I clinical trial will test a single dose of DEX-M74 in a small group of patients with a focus on drug safety and how well patients tolerate the drug.

Nuria Carrillo, M.D., TRND staff physician and principal investigator of the trial, plans to follow up the initial study with a Phase I/II trial in which patients will receive multiple doses of DEX-M74.

Researchers will monitor patients for drug tolerance and indications of drug effectiveness. If DEX-M74 is safe in the Phase I/II trial, researchers will plan a Phase II study to determine the clinical effectiveness of the drug in HIBM patients.

"The NIH has achieved a significant milestone in the development of a potential treatment for HIBM, and we are excited about this research reaching the clinical trial stage," said NZP Chief Executive Officer Andy Lewis. "The pre-clinical data are very strong, and we are keen to see DEX-M74 progress through the clinical phases. Once we have proven human efficacy we plan to offer DEX-M74 to patients."

The HIBM clinical trial is the third TRND project to advance to human clinical trials. The two other clinical trials are evaluating treatments for sickle cell disease and chronic lymphocytic leukemia.

Dr. Carrillo also is overseeing a natural history study of HIBM to collect health information from patients to understand how the disease develops. TRND has developed a portfolio of 14 projects, including HIBM, which focus on rare and neglected tropical diseases.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
Drugs that Activate Brain Stem Cells May Reverse Multiple Sclerosis
NIH-funded study identifies over-the-counter compounds that may replace damaged cells.
Tuesday, April 21, 2015
Allergy Drug Inhibits Hepatitis C in Mice
NIH study suggests alternative drug to treat virus.
Friday, April 10, 2015
Barrier-Breaking Drug May Lead to Spinal Cord Injury Treatments
NIH-funded scientists take first step towards developing promising new drug.
Thursday, December 04, 2014
Two Drugs are No More Effective Than One to Treat Common Kidney Disease
NIH study finds limited kidney benefit from more rigorous blood pressure treatment.
Saturday, November 29, 2014
New Drug for Common Liver Disease Improves Liver Health
An experimental drug aimed at treating a common liver disease showed promising results and potential problems in a multicenter clinical trial funded by the NIH.
Monday, November 10, 2014
First Drug Candidate from NIH Program Acquired by Baxter
Potential treatment targets sickle cell disease.
Tuesday, July 15, 2014
Drug Does Not Improve Set of Cardiovascular Outcomes for Diastolic Heart Failure
NIH-supported study finds drug does appear to reduce hospitalizations for diastolic heart failure.
Tuesday, April 15, 2014
NIH, Industry and Non-Profits Join Forces to Speed Validation of Disease Targets
Goal is to develop new treatments earlier, beginning with Alzheimer's, type 2 diabetes, and autoimmune disorders.
Tuesday, February 11, 2014
Tobacco, Drug Use in Pregnancy Can Double Risk of Stillbirth
NIH network study documents elevated risk associated with marijuana, other substances.
Tuesday, December 24, 2013
Exploring Structure-Activity Data Using the Landscape Paradigm
Structure-activity relationships represent a core aspect of medicinal chemistry.
Friday, November 08, 2013
NIH Researchers Implicate Unique Cell Type in Multiple Sclerosis
Study reveals new effects of the investigational MS drug daclizumab.
Friday, August 03, 2012
Neighbors Help Cancer Cells Resist Treatment
New study reveals that surrounding cells help tumors develop resistance to drugs.
Wednesday, July 25, 2012
NIH Funds Development of Tissue Chips to Help Predict Drug Safety
DARPA and FDA to collaborate on therapeutic development initiative.
Wednesday, July 25, 2012
NIH to Test Maraviroc-Based Drug Regimens for HIV Prevention
Safety, tolerability study to enroll MSM in the United States and Puerto Rico.
Thursday, July 19, 2012
Scientific News
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
New Diabetes Drug has Unexpected Side Effect
A type of drug used to treat diabetes may reduce the risk of developing Parkinson’s disease, according to new research.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Cannabis May Be Used to Treat Fractures
TAU researcher finds non-psychotropic compound in marijuana can help heal bone fissures.
A Novel Drug to FIght Malaria
An international team of scientists has announced that a new compound to fight malaria is ready for human trials.
New Cell Structure Finding Might Lead to Novel Cancer Therapies
University of Warwick scientists in the U.K. say they have discovered a cell structure which could help researchers understand why some cancers develop.
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Potential New Class of Cancer Drugs
Scientists have found a way to stop cancer cell growth by targeting the Warburg Effect, a trait of cancer cell metabolism that scientists have been eager to exploit.
Global Search for Next Antibiotic
University of Queensland researchers have launched a global search to discover antibiotics capable of combating superbug bacteria that are resistant to current antibiotics.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!