Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Parkinson's Breakthrough Could Slow Disease Progression

Published: Friday, October 26, 2012
Last Updated: Friday, October 26, 2012
Bookmark and Share
In an early-stage breakthrough, a team of Northwestern University scientists has developed a new family of compounds that could slow the progression of Parkinson's.

Parkinson’s, the second most common neurodegenerative disease, is caused by the death of dopamine neurons, resulting in tremors, rigidity and difficulty moving. Current treatments target the symptoms but do not slow the progression of the disease.

The new compounds were developed by Richard B. Silverman, the John Evans Professor of Chemistry at the Weinberg College of Arts and Sciences and inventor of the molecule that became the well-known drug Lyrica, and D. James Surmeier, chair of physiology at Northwestern University Feinberg School of Medicine. Their research was published Oct. 23 in the journal Nature Communications.

The compounds work by slamming the door on an unwelcome and destructive guest -- calcium. The compounds target and shut a relatively rare membrane protein that allows calcium to flood into dopamine neurons. Surmeier’s previously published research showed that calcium entry through this protein stresses dopamine neurons, potentially leading to premature aging and death. He also identified the precise protein involved -- the Cav1.3 channel.

“These are the first compounds to selectively target this channel,” Surmeier said. “By shutting down the channel, we should be able to slow the progression of the disease or significantly reduce the risk that anyone would get Parkinson’s disease if they take this drug early enough.”

“We’ve developed a molecule that could be an entirely new mechanism for arresting Parkinson’s disease, rather than just treating the symptoms,“ Silverman said.

The compounds work in a similar way to the drug isradipine, for which a Phase 2 national clinical trial with Parkinson’s patients –- led by Northwestern Medicine neurologist Tanya Simuni, M.D. -- was recently completed. But because isradipine interacts with other channels found in the walls of blood vessels, it can’t be used in a high enough concentration to be highly effective for Parkinson’s disease. (Simuni is the Arthur C. Nielsen Professor of Neurology at the Feinberg School and a physician at Northwestern Memorial Hospital.)

The challenge for Silverman was to design new compounds that specifically target this rare Cav1.3 channel, not those that are abundant in blood vessels. He and colleagues first used high-throughput screening to test 60,000 existing compounds, but none did the trick.

“We didn’t want to give up,” Silverman said. He then tested some compounds he had developed in his lab for other neurodegenerative diseases. After Silverman identified one that had promise, Soosung Kang, a postdoctoral associate in Silverman’s lab, spent nine months refining the molecules until they were effective at shutting only the Cav1.3 channel.

In Surmeier’s lab, the drug developed by Silverman and Kang was tested by graduate student Gary Cooper in regions of a mouse brain that contained dopamine neurons. The drug did precisely what it was designed to do, without any obvious side effects.

“The drug relieved the stress on the cells,” Surmeier said.

For the next step, the Northwestern team has to improve the pharmacology of the compounds to make them suitable for human use, test them on animals and move to a Phase 1 clinical trial.

“We have a long way to go before we are ready to give this drug, or a reasonable facsimile, to humans, but we are very encouraged,” Surmeier said.

The research was supported by the Michael J. Fox Foundation and the RJG Foundation.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Combining Chemotherapy With Immune-Blocking Drug Could Stop Cancer Growing Back
Giving patients a drug that blocks part of the immune system from going into overdrive might help prevent cancer coming back in some people.
Researchers Pioneer Use of Capsules to Save Materials
Wax capsule delivery systems can simplify a wide range of chemistry transformations.
Photoredox Catalyst Unlocks New Pathways for Nickel Chemistry
Using a light-activated catalyst, researchers have unlocked a new pathway in nickel chemistry to construct carbon-oxygen (C-O) bonds that would be highly valuable to pharmaceutical and agrochemical industries.
Scientists Determine How Antibiotic Gains Cancer-Killing Sulfur Atoms
In a discovery with implications for future drug design scientists have shown an unprecedented mechanism for how a natural antibiotic with antitumor properties incorporates sulfur into its molecular structure, an essential ingredient of its antitumor activity.
Familiar Drugs May Block Ebola Virus Infection
A well-known class of molecules, many of which are already in use therapeutically, may be able to block the Ebola virus’s entry into cells and halt the disease in its tracks, according to researchers at the University of Illinois at Chicago.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Common Class of ‘Channel Blocking’ Drugs May Find a Role in Cancer Therapy
Discoveries in fruit flies prompt unusual treatment of patient with metastatic disease.
Common Medications Could Delay Brain Injury Recovery
Drugs used to treat common complaints could delay the recovery of brain injury patients according to research by University of East Anglia (UEA) and University of Aberdeen scientists, published today in Brain Injury.
Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
New Clot-Busting Treatments Target Number One Killer
Australian researchers funded by the National Heart Foundation are a step closer to a safer and more effective way to treat heart attack and stroke via nanotechnology.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!