Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemists Find Help from Nature in Fighting Cancer

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Study of several dozen compounds based on a fungal chemical shows potent anti-tumor activity.

Inspired by a chemical that fungi secrete to defend their territory, MIT chemists have synthesized and tested several dozen compounds that may hold promise as potential cancer drugs.

A few years ago, MIT researchers led by associate professor of chemistry Mohammad Movassaghi became the first to chemically synthesize 11,11’-dideoxyverticillin, a highly complex fungal compound that has shown anti-cancer activity in previous studies. This and related compounds naturally occur in such small amounts that it has been difficult to do a comprehensive study of the relationship between the compound’s structure and its activity — research that could aid drug development, Movassaghi says.

“There’s a lot of data out there, very exciting data, but one thing we were interested in doing is taking a large panel of these compounds, and for the first time, evaluating them in a uniform manner,” Movassaghi says.

In the new study, recently published online in the journal Chemical Science, Movassaghi and colleagues at MIT and the University of Illinois at Urbana-Champaign (UIUC) designed and tested 60 compounds for their ability to kill human cancer cells.

“What was particularly exciting to us was to see, across various cancer cell lines, that some of them are quite potent,” Movassaghi says.

Lead author of the paper is MIT postdoc Nicolas Boyer. Other authors are MIT graduate student Justin Kim, UIUC chemistry professor Paul Hergenrother and UIUC graduate student Karen Morrison.

Improving nature’s design

Many of the compounds tested in this study, known as epipolythiodiketopiperazine (ETP) alkaloids, are naturally produced by fungi. Scientists believe these compounds help fungi prevent other organisms from encroaching on their territory.

In the process of synthesizing ETP natural products in their lab, the MIT researchers produced many similar compounds that they suspected might also have anti-cancer activity. For the new study, they created even more compounds by systematically varying the natural structures — adding or removing certain chemical groups from different locations.

The researchers tested 60 compounds against two different human cancer cell lines — cervical cancer and lymphoma. Then they chose the best 25 to test against three additional lines, from lung, kidney and breast tumors. Overall, dimeric compounds — those with two ETP molecules joined together — appeared to be more effective at killing cancer cells than single molecules (known as monomers).

The structure of an ETP natural product typically has at least one set of fused rings containing one or more sulfur atoms that link to a six-member ring known as a cyclo-dipeptide. The researchers found that another key to tumor-killing ability is the arrangement and number of these sulfur atoms: Compounds with at least two sulfur atoms were the most effective, those with only one sulfur atom were less effective, and those without sulfur did not kill tumor cells efficiently.

Other rings typically have chemical groups of varying sizes attached in certain positions; a key position is that next to the ETP ring. The researchers found that the larger this group, the more powerful the compound was against cancer.

The compounds that kill cancer cells appear to be very selective, destroying them 1,000 times more effectively than they kill healthy blood cells.

The researchers also identified sections of the compounds that can be altered without discernably changing their activity. This is useful because it could allow chemists to use those points to attach the compounds to a delivery agent such as an antibody that would target them to cancer cells, without impairing their cancer-killing ability.

Complex synthesis

Larry Overman, a professor of chemistry at the University of California at Irvine, says the new study is an impressive advance. “Movassaghi and coworkers reveal for the first time a number of relationships between the chemical structure of molecules in the ETP series and their in-vitro anti-cancer activity,” says Overman, who was not part of the research team. “Knowledge of this type will be essential for the future development of ETP-type molecules into attractive clinical candidates and potential novel anti-cancer drugs.”

Now that they have some initial data, the researchers can use their findings to design additional compounds that might be even more effective. “We can go in with far greater precision and test the hypotheses we’re developing in terms of what portions of the molecules are most significant at retaining or enhancing biological activity,” Movassaghi says.

The research was funded by the National Institute of General Medical Sciences.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Chemists Recruit Anthrax to Deliver Cancer Drugs
With some tinkering, a deadly protein becomes an efficient carrier for antibody drugs.
Tuesday, September 30, 2014
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Two MIT Professors Win Prestigious Wolf Prize
Michael Artin and Robert Langer honored for groundbreaking work in mathematics and chemistry.
Wednesday, January 09, 2013
MIT Chemist Discovers Secret Behind Nature's Medicines
Chemists have the capability of a particular enzyme to reproduce antibiotics, anti-tumor agents, and fungicides.
Friday, April 28, 2006
Scientific News
Combining Chemotherapy With Immune-Blocking Drug Could Stop Cancer Growing Back
Giving patients a drug that blocks part of the immune system from going into overdrive might help prevent cancer coming back in some people.
Researchers Pioneer Use of Capsules to Save Materials
Wax capsule delivery systems can simplify a wide range of chemistry transformations.
Photoredox Catalyst Unlocks New Pathways for Nickel Chemistry
Using a light-activated catalyst, researchers have unlocked a new pathway in nickel chemistry to construct carbon-oxygen (C-O) bonds that would be highly valuable to pharmaceutical and agrochemical industries.
Scientists Determine How Antibiotic Gains Cancer-Killing Sulfur Atoms
In a discovery with implications for future drug design scientists have shown an unprecedented mechanism for how a natural antibiotic with antitumor properties incorporates sulfur into its molecular structure, an essential ingredient of its antitumor activity.
Familiar Drugs May Block Ebola Virus Infection
A well-known class of molecules, many of which are already in use therapeutically, may be able to block the Ebola virus’s entry into cells and halt the disease in its tracks, according to researchers at the University of Illinois at Chicago.
New Extra ‘Sticky’ Microgel Could Revolutionise Bladder Cancer Treatment
Researchers have designed a new super-efficient way of delivering an anti-cancer drug which could extend and improve the quality of life for bladder cancer patients - and perhaps save lives.
Common Class of ‘Channel Blocking’ Drugs May Find a Role in Cancer Therapy
Discoveries in fruit flies prompt unusual treatment of patient with metastatic disease.
Common Medications Could Delay Brain Injury Recovery
Drugs used to treat common complaints could delay the recovery of brain injury patients according to research by University of East Anglia (UEA) and University of Aberdeen scientists, published today in Brain Injury.
Scientists Make Strides in Therapy Preventing Addiction Relapse
Single Injection of Drug Candidate Prevents Meth Relapse in Animal Models.
New Clot-Busting Treatments Target Number One Killer
Australian researchers funded by the National Heart Foundation are a step closer to a safer and more effective way to treat heart attack and stroke via nanotechnology.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!