Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemical Synthesis: A Simple Technique for Highly Functionalized Compounds

Published: Monday, September 30, 2013
Last Updated: Monday, September 30, 2013
Bookmark and Share
Researchers at Kanazawa University have demonstrated a technique that allows direct functionalization of alkenes without the need for metallic reagents, photolysis or extreme reaction conditions.

The addition of functional groups to certain unsaturated hydrocarbons, known as alkenes, is a crucial stage in the synthesis of various compounds, including many plastics. For these functionalization reactions to occur a carbon-hydrogen (C-H) bond must be activated, which is traditionally achieved using transition metal catalysts. However use of these catalysts has both economical and environmental drawbacks. 

Tsuyoshi Taniguchi and colleagues at Kanazawa University developed work where they had reported a reaction of alkenes using tert-butyl nitrite and molecular oxygen. They monitored the reaction products — ɣ-lactol and nitrate ester — using different solvents, and found that a high polarity aprotic (hydrogen-free) solvent gave the best yield, with ɣ-lactol as the major product. 

They then experimented with different alkenes and observed how the products differed for branched and linear alkenes. Further reduction reactions demonstrated how the new synthesis technique could yield a range of useful derivatives, producing highly functionalized compounds from simple alkenes in only one or two steps.

The researchers were also able to propose a possible reaction mechanism. While the exact pathway remains uncertain, they suggest that the key step is the cleavage of an oxygen-oxygen bond to form a highly reactive alkoxy radical – a molecular component comprising an oxygen with single bonds either side to hydrocarbon chains.

The work demonstrates how substantial yields of highly functionalized compounds can be achieved from simple organic molecules in simple conditions with no metal catalyst. The authors conclude, “We believe that such ‘simple and advanced reactions’ are promising in the development of useful synthetic methods involving direct C–H functionalization.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Designing Drugs with a Whole New Toolbox
Researchers develop methods to design small, targeted proteins with shapes not found in nature.
Small Molecules Lead to a Big Change in Reaction Outcomes
Scientists have changed the behaviour of a group of molecules involved in carbon-oxygen bond synthesis.
Targeting Fat to Treat Cancer
Researchers develop novel cancer treatment that halts fat synthesis in cells, stunting tumors.
Hyperstable Peptides for 'On-Demand' Drugs
These small molecules can fold into different conformations that could allow for greater flexibility in precision drug design
Drug Leads Identified to Combat Heart Disease
Using three supercomputers, researchers surveyed protein structures through accelerated molecular dynamics.
Accelerating the Path to Molecules for Medicine
Researchers convert carbon-hydrogen bonds into nitriles - converting organic molecules into components of medicines.
New Hope for Zika Treatment Found in Large-Scale Screen of Existing Drugs
Johns Hopkins researchers join collaborative group to screen 6,000 existing drugs in hopes of finding treatments for Zika Virus infection
Game Changing Antibacterial Drug Research
Researchers publish report on the synthesis of a newly discovered “game-changing” antibiotic, Teixobactin.
New Way of Displaying 3D Molecular Structures
Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples.
Agent Blocks Pain Without Morphine's Side Effects
Scientists have synthesised a molecule with specific pain-relief properties and has shown its efficacy in mice.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!