Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

World’s Tiniest Drug Cabinets could be Attached to Cancerous Cells for Long Term Treatment

Published: Wednesday, January 15, 2014
Last Updated: Wednesday, January 15, 2014
Bookmark and Share
Reservoirs of pharmaceuticals could be manufactured to bind specifically to infected tissue such as cancer cells for slow, concentrated delivery of drug treatments.

The findings, from the University of Copenhagen and the Institut Laue-Langevin (ILL), came as a result of neutron reflectometry studies at the world’s leading neutron source in Grenoble, France. They could provide a way to reduce dosages and the frequency of injections administered to patients undergoing a wide variety of treatments, as well as minimising side effects of over-dosing.

The attachment of reservoirs of therapeutic drugs to cell membranes for slow diffusion and continuous delivery inside the cells is a major aim in drug R&D. A promising candidate for packaging and carrying concoctions of drugs is a group of self-assembled liquid crystalline particles. Composed of fatty molecules – phospholipids - and tree-like macromolecules called dendrimers, the particles form spontaneously and have the capacity to soak up and carry large quantities of drug molecules for prolonged diffusion. They are also known for their ability to bind to cellular membranes.

The first treatments using such particles are close to market through products incorporating a similar formulation called Cubosomes (cubic phase nanoparticles). Developed and commercialized by Swedish start-up Camarus Ab, its FluidCrystal® nanoparticles promise months of drug delivery from a single injection and the possibility of tuning the delivery to intervals of anything from once a day to once a month. However, a key requirement for optimal application of these formulations is a detailed understanding of how they interact with cellular membranes.

This was the focus of a collaboration between Dr Marité Cárdenas (Copenhagen) and Dr Richard Campbell and Dr Erik Watkins (ILL). In this experiment the team used neutrons to analyse the interaction of the liquid crystalline particles with a model cellular membrane whilst varying two parameters:

• Gravity – to see how the interaction changed if the aggregates attacked the cell membrane from below as opposed to above
• Electrostatics – to see how the balance between positive and negative charges of the aggregate and membrane affect the interaction

The team utilised a technique known as neutron reflectometry whereby beams of neutrons are skimmed off a surface. The reflectivity is measured and used to infer detailed information about the surface, including the thickness, detailed structure and composition of any layers beneath. These experiments were carried out on the FIGARO instrument at the ILL in Grenoble which offers unique reflection up vs. down modes that allowed the team to examine the top and bottom surfaces, alternating the samples on a two hourly basis during a 30 hour sampling period.

The interaction of the liquid crystalline particles with the membrane was shown to be driven by the charge on the model cell membrane. Subtle changes in the degree of negative charge on the membrane encouraged the tree-like dendrimer molecules to penetrate, allowing the rest of the molecule to bind to the surface, forming an attached reservoir. The sensitivity of the interaction to small changes in charge suggests that simple adjustments to the proportion of charged lipids and macromolecules could optimise this attachment. In the future this characteristic could also provide a mechanism to focus the treatment at targeted cells such as those infected by cancer, which are thought to be more negatively charge than healthy cells.

"Cancerous cells have an imbalance that gives them a different molecular composition and overall different physical properties to normal healthy cells”, explains Dr Cardenas. “Whilst all cells are negative, cancerous cells tend to be more negatively charged than healthy ones due to a different composition of fatty molecules on their surface. This is a property that we believe could be exploited in future research into delivery mechanisms involving the attachment of lamellar liquid crystalline particles. Our next step is to introduce the drug itself into the reservoirs and make sure it can move across the membrane. This work paves the way for cell tests and clinical trials in the future exploiting our methodology”

In terms of gravitational effects, the analysis also showed that aggregates interacted more strongly with membranes when located above the sample. Similar effects caused by differences in density and buoyancy of solutions are already exploited in some stomach treatments and the researchers would encourage future studies into how gravitational effects could be used to optimise these interactions for drug delivery.

The research was published in ACS Macro Letters.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
New Diabetes Drug has Unexpected Side Effect
A type of drug used to treat diabetes may reduce the risk of developing Parkinson’s disease, according to new research.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Cannabis May Be Used to Treat Fractures
TAU researcher finds non-psychotropic compound in marijuana can help heal bone fissures.
A Novel Drug to FIght Malaria
An international team of scientists has announced that a new compound to fight malaria is ready for human trials.
New Cell Structure Finding Might Lead to Novel Cancer Therapies
University of Warwick scientists in the U.K. say they have discovered a cell structure which could help researchers understand why some cancers develop.
Creating More Potent Vaccines
Yale researchers uncovered a new role for a type of immune cell, known as regulatory T cells, in promoting long-term immunity.
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Potential New Class of Cancer Drugs
Scientists have found a way to stop cancer cell growth by targeting the Warburg Effect, a trait of cancer cell metabolism that scientists have been eager to exploit.
Global Search for Next Antibiotic
University of Queensland researchers have launched a global search to discover antibiotics capable of combating superbug bacteria that are resistant to current antibiotics.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!