Corporate Banner
Satellite Banner
Medicinal Chemistry
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nuevolution Enter Drug Discovery Collaboration with ICR and CRT

Published: Thursday, January 23, 2014
Last Updated: Wednesday, January 22, 2014
Bookmark and Share
International deal to screen potential cancer drugs using DNA ‘barcodes’.

The Institute of Cancer Research (ICR), London, Cancer Research Technology (CRT), London and Nuevolution A/S, Copenhagen have entered into a drug discovery collaboration to identify novel lead candidates for cancer treatment.

Researchers will use Nuevolution’s screening technology, Chemetics®, to screen libraries each of millions of DNA-tagged compounds to identify those that act on a key protein in the stress response pathway, which has an important role in cancer cell survival and resistance to cancer treatments. This screening technology allows potent drug leads to be identified quickly, accurately and from very large and complex compound mixtures.

The three-way deal between the ICR, Nuevolution and CRT, the commercial arm of Cancer Research UK, builds on an existing collaboration between CRT and Nuevolution, which aims to identify drug leads that block the activity of several challenging cancer targets of therapeutic interest.

Under the new deal, the Cancer Research UK Cancer Therapeutics Unit at the ICR and Nuevolution will collaborate to screen a key target within the stress response pathway.

Researchers from the Cancer Research UK Cancer Therapeutics Unit at the ICR will provide detailed insights and scientific expertise on the specific stress pathway target as well as their extensive experience in cancer drug discovery and development.

Nuevolution will provide its proprietary Chemetics® technology, screening expertise and medicinal chemistry expertise to optimize drug candidates.

The parties have an option to co-develop promising compounds arising from this collaboration. The agreement is open-ended and allows for the screening of additional targets.

Professor Paul Workman, Deputy Chief Executive of The Institute of Cancer Research, London, and Director of the Cancer Research UK Cancer Therapeutics Unit said: “The stress response pathway plays a key role in allowing cancer cells to survive and to develop drug resistance – so it is increasingly being seen as an exciting source of future drug targets. But for some of these targets it is technically very challenging to identify prototype small molecule drugs. The new collaboration between the ICR, Cancer Research Technology and Nuevolution will allow us to screen very rapidly and efficiently for compounds that are able to bind to a key component of the stress response pathway that we have identified as especially important, and could help us to identify new drug candidates far more quickly than would otherwise be the case. By working in partnership we can accelerate the potential for patient benefit.”

Dr Phil L’Huillier, Cancer Research Technology’s director of business management, said: “Our role is to build global industry-academic partnerships to bring the best technologies and expertise together to develop new treatments for cancer patients - ultimately saving more lives from the disease. This exciting international collaboration combines global expertise and resources to exploit the untapped biology of the stress response pathway. This work will accelerate the identification of potential new cancer drugs though an innovative approach to scan for DNA ‘barcode’ tags on promising new molecules - extending the existing relationship between Nuevolution and CRT.”

Thomas Franch, CSO, Nuevolution A/S said: “We are delighted to enter this project and to expand our present collaborations with ICR and CRT. The project will address a highly challenging target for which small molecule compounds is not easily identified using conventional screening methods. We hope to identify lead compounds using the Chemetics® technology and look forward to moving this exciting project forward together with the world-leading team at ICR."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
Drug Design Strategy to Improve Breast Cancer Treatment
Scientists develop novel structure-based drug design strategy aimed at altering the basic landscape of hormone-driven breast cancer treatment.
`Molecular Commando’ Identified to Tackle Hypoxia Pathway
Scientists identify 'molecular commando' that can activate hypoxic response, which helps combat a number of conditions.
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Two Antibiotics Fight Bacteria Differently Than Thought
Researchers discover that two widely prescribed antibiotics may fight bacteria differently than previously thought.
Drug Target for Gastrointestinal Stromal Tumors Identified
Researchers show the Hedgehog signaling pathway is central to the formation of gastrointestinal stromal tumors.
Structure of Primary Cannabinoid Receptor is Revealed
The findings provide key insights into how natural and synthetic cannabinoids including tetrahydrocannabinol —a primary chemical in marijuana—bind at the CB1 receptor to produce their effects.
Targeting Cannabinoid CB2 Receptors in the CNS
With endogenous cannabinoids considered as a potential target to combat CNS diseases, this article examines the role of CB2R could play in fighting some disorders.
3D-Printing in Science: Conference Co-Staged with LABVOLUTION
LABVOLUTION 2017 will have an added highlight of a simultaneous conference, "3D-Printing in Science".
Charles River Acquires Agilux
Enhances Charles River’s early-stage capabilities in bioanalytical services.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!