Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Urine Samples could be Used to Predict Responses to Drugs, Say Researchers

Published: Tuesday, August 11, 2009
Last Updated: Tuesday, August 11, 2009
Bookmark and Share
Researchers show possibility to predict how different individuals would deal with one drug by looking at metabolites in their urine.

Researchers may be able to predict how people will respond to particular drugs by analyzing their urine samples, suggest scientists behind a new study published in the journal Proceedings of the National Academy of Sciences.

Not all drugs are effective in all patients and occasionally, susceptible individuals can have adverse reactions to them. In this study, researchers from Imperial College London and Pfizer Research and Development showed that it was possible to predict how different individuals would deal with one drug by looking at the levels of different products of metabolism, known as metabolites, in their urine before they took a dose of the drug.

The researchers say that this kind of 'metabolic profiling' could ultimately be a valuable tool for predicting how different individuals will react to drugs, enabling those developing drugs to match drug treatments to individuals' requirements and avoid adverse side effects. They argue that those developing new, personalized approaches to medicine will need to consider metabolic as well as genetic profiling when developing drugs, in order to produce a complete picture of different individuals' makeup.

Metabolic profiles reflect complex gene-environment interactions and the activities of gut bacteria - factors that can influence drug metabolism and toxicity.

Bacteria in the gut, or gut microbes, live symbiotically in human and animal bodies and there is growing recognition that they play an important part in influencing people's metabolic makeup. The study provides evidence that gut microbes can have a crucial role in determining a person's response to a particular drug.

The new study looked at 99 healthy male volunteers aged between 18 and 64, taking one dose of the commonly used painkiller acetaminophen, widely known as paracetamol in the UK. The researchers took urine samples from the men before they took the paracetamol dose and for six hours afterwards and analyzed the metabolites in the samples using 1H NMR spectroscopy.

The results revealed that a compound called para-cresol sulphate, which is derived from para-cresol produced by bacteria in the gut, was an indicator of how the men would metabolise the dose of paracetamol. Those with higher levels of para-cresol sulphate metabolized the drug in a different way from those with lower levels.

The scientists suggest that this is because the body uses compounds containing sulphur to process drugs like paracetamol effectively and para-cresol can deplete sulphur compounds in the body.

The body uses sulphur to process a variety of drugs, not just paracetamol, so the new findings about para-cresol could have significant implications for a whole group of drugs, say the researchers. Further work is now needed to explore areas such as the relationship between para-cresol and other drugs, and whether para-cresol has any relevance to instances of accidental paracetamol poisoning.

The researchers also suggest that where the bacteria in the gut are affecting the body's ability to process a particular drug, it might ultimately be possible to alter the makeup of these bacteria so that the body can process a variety of drugs more effectively and safely.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Urine Profiles Provide Clues To How Obesity Causes Disease
Scientists have identified chemical markers in urine associated with body mass, providing insights into how obesity causes disease.
Thursday, April 30, 2015
Light-activated Drug Could Reduce Side Effects of Diabetes Medication
Scientists have created a drug for type 2 diabetes that is switched on by blue light, which they hope will improve treatment of the disease.
Thursday, October 16, 2014
Metabolic 'Fingerprinting' of Tumours Could Help Bowel Cancer Patients
New research makes it possible to see how advanced a bowel cancer is by looking at its metabolic 'fingerprint.'
Tuesday, August 13, 2013
New Laboratory Aims to Revolutionise Surgery with Real-Time Metabolic Profiling
Metabolic profiling of tissue samples could transform the way surgeons make decisions in the operating theatre, say researchers at a new laboratory being launched today.
Thursday, January 13, 2011
Some Morbidly Obese People are Missing Genes, Shows New Research
According to the new findings, around seven in every thousand morbidly obese people are missing a part of their DNA.
Friday, February 05, 2010
Heart Rhythm Gene Revealed in new Research
Discovery could help scientists design more targeted drugs to prevent and treat certain heart problems.
Monday, January 11, 2010
Research Reveals Exactly How Coughing is Triggered by Environmental Irritants
Scientists identify the reaction inside the lungs that can trigger coughing when a person is exposed to particular irritants in the air.
Monday, November 23, 2009
Ironing Out the Genetic Cause of Hemoglobin Problems
A gene with a significant effect on regulating hemoglobin in the body has been identified as part of a genome-wide association study.
Monday, October 12, 2009
Scientists Discover new Genetic Variation that Contributes to Diabetes
Study identifies a genetic variation in people with type 2 diabetes that affects how the body's muscle cells respond to the hormone insulin.
Tuesday, September 08, 2009
Think Zinc: Molecular Sensor Could Reveal Zinc's Role in Diseases
Scientists develop a new molecular sensor to analyze the amount of zinc in cells.
Tuesday, September 08, 2009
Glutamic Acid Linked to Lower Blood Pressure
The new research suggests that glutamic acid may be one of the components of vegetable protein linked to lower blood pressure.
Monday, July 06, 2009
On-the-spot DNA Analysis to Test Tolerance to Prescription Drugs Gets Closer
A handheld device to predict whether patients will respond adversely to medication is one step closer to the market.
Tuesday, February 17, 2009
Childhood Obesity Risk Increased 50 Percent by new Genetic Mutations, Says Study
Three new genetic mutations that together can increase a very young child's risk of becoming obese by 50 percent are revealed in a new study.
Wednesday, January 21, 2009
Common Mutations Linked to Common Obesity in Europeans
Scientists have discovered two common genetic mutations in people of European ancestry, which affect the production of several hormones controlling our appetite.
Monday, July 07, 2008
Causes of Disease Can Be Revealed By Metabolic Fingerprinting, According to 'Metabolome-Wide' Study
Your metabolic 'fingerprint' can reveal much about the possible causes of major diseases, according to the study published in the journal Nature.
Monday, April 21, 2008
Scientific News
Altered Metabolism of Four Compounds Drives Glioblastoma Growth
Findings suggest new ways to treat the malignancy, slow its progression and reveal its extent more precisely.
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Liver-On-Chip Tracks Dynamics of Cellular Function
Hebrew University’s liver-on-chip platform is uniquely able to monitor metabolic changes indicating mitochondrial damage occurring at drug concentrations previously regarded as safe.
Living Off the Fat of the Land
Do cancer cells synthesize the parts for new cells or scavenge them from the environment?
Liver Disease, Obesity Linked
Kanazawa University researchers find similarities in the impeded signalling between central insulin activity and glucose production in the liver for both obese mice and mice that have had the vagus nerve removed.
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Gene Identified that May Worsen Cancer Outcome
Some patients with breast cancer, lung cancer and leukaemia seem to fare poorly after treatment because of the effects of a particular gene, a new study finds.
‘Big Data’ Drills Down Into Metabolic Details
Rice University bioengineers introduce efficient way to analyze, compare tissue-specific pathways.
New Approach to Curbing Cancer Cell Growth
Using a new approach, scientists at The Scripps Research Institute (TSRI) and collaborating institutions have discovered a novel drug candidate that could be used to treat certain types of breast cancer, lung cancer and melanoma.
New Drug Delivery Method for Pancreatic Cancer
UCLA researchers use nanoparticles to send chemotherapy drug directly to the tumor site, reducing damage to healthy tissues.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!