Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Discover new Genetic Variation that Contributes to Diabetes

Published: Tuesday, September 08, 2009
Last Updated: Tuesday, September 08, 2009
Bookmark and Share
Study identifies a genetic variation in people with type 2 diabetes that affects how the body's muscle cells respond to the hormone insulin.

Scientists have identified a genetic variation in people with type 2 diabetes that affects how the body's muscle cells respond to the hormone insulin, in a new study published in Nature Genetics.

The researchers, from Imperial College London and other international institutions, say the findings highlight a new target for scientists developing treatments for diabetes.

Previous studies have identified several genetic variations in people with type 2 diabetes that affect how insulin is produced in the pancreas. The study shows for the first time a genetic variation that seems to impair the ability of the body's muscle cells to use insulin to help them make energy.

People with type 2 diabetes can have problems with the body not producing enough insulin and with cells in the muscles, liver and fat becoming resistant to it. Without sufficient insulin, or if cells cannot use insulin properly, cells are unable to take glucose from the blood and turn it into energy. Until now, scientists had not been able to identify the genetic factors contributing to insulin resistance in type 2 diabetes.

In the new research, scientists from international institutions including Imperial College London, McGill University, Canada, CNRS, France, and the University of Copenhagen, Denmark, looked for genetic markers in over 14,000 people and identified four variations associated with type 2 diabetes. One of these was located near a gene called IRS1, which makes a protein that tells the cell to start taking in glucose from the blood when it is activated by insulin.

The researchers believe that the variant they have identified interrupts this process, impairing the cells' ability to make energy from glucose. The researchers hope that scientists will be able to target this process to produce new treatments for type 2 diabetes.

Professor Philippe Froguel, one of the corresponding authors of today's study from the Department of Genomic Medicine at Imperial College London, said: "We are very excited about these results - this is the first genetic evidence that a defect in the way insulin works in muscles can contribute to diabetes. Muscle tissue needs to make more energy using glucose than other tissues. We think developing a treatment for diabetes that improves the way insulin works in the muscle could really help people with type 2 diabetes.

"It is now clear that several drugs should be used together to control this disease. Our new study provides scientists developing treatments with a straightforward target for a new drug to treat type 2 diabetes," added Professor Froguel.

The researchers carried out a multistage association study to identify the new gene. First, they looked at genome-wide association data from 1,376 French individuals and identified 16,360 single-nucleotide polymorphisms (SNPs), or genetic variations, associated with type 2 diabetes. The researchers then studied these variations in 4,977 French individuals.

Next, the team selected the 28 most strongly associated SNPs and looked for them in 7,698 Danish individuals. Finally, the researchers identified four SNPs strongly associated with type 2 diabetes. The most significant of these variations was located near the insulin receptor substrate 1, or IRS1, gene.

To test their findings, the team analyzed biopsies of skeletal muscle from Danish twins, one of whom had type 2 diabetes. They found that the twin with diabetes had the variation near IRS1 and this variation resulted in insulin resistance in the muscle. They also noted that the variation affected the amount of protein produced by the gene IRS1, suggesting that the SNP controls the IRS1 gene.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Urine Profiles Provide Clues To How Obesity Causes Disease
Scientists have identified chemical markers in urine associated with body mass, providing insights into how obesity causes disease.
Thursday, April 30, 2015
Light-activated Drug Could Reduce Side Effects of Diabetes Medication
Scientists have created a drug for type 2 diabetes that is switched on by blue light, which they hope will improve treatment of the disease.
Thursday, October 16, 2014
Metabolic 'Fingerprinting' of Tumours Could Help Bowel Cancer Patients
New research makes it possible to see how advanced a bowel cancer is by looking at its metabolic 'fingerprint.'
Tuesday, August 13, 2013
New Laboratory Aims to Revolutionise Surgery with Real-Time Metabolic Profiling
Metabolic profiling of tissue samples could transform the way surgeons make decisions in the operating theatre, say researchers at a new laboratory being launched today.
Thursday, January 13, 2011
Some Morbidly Obese People are Missing Genes, Shows New Research
According to the new findings, around seven in every thousand morbidly obese people are missing a part of their DNA.
Friday, February 05, 2010
Heart Rhythm Gene Revealed in new Research
Discovery could help scientists design more targeted drugs to prevent and treat certain heart problems.
Monday, January 11, 2010
Research Reveals Exactly How Coughing is Triggered by Environmental Irritants
Scientists identify the reaction inside the lungs that can trigger coughing when a person is exposed to particular irritants in the air.
Monday, November 23, 2009
Ironing Out the Genetic Cause of Hemoglobin Problems
A gene with a significant effect on regulating hemoglobin in the body has been identified as part of a genome-wide association study.
Monday, October 12, 2009
Think Zinc: Molecular Sensor Could Reveal Zinc's Role in Diseases
Scientists develop a new molecular sensor to analyze the amount of zinc in cells.
Tuesday, September 08, 2009
Urine Samples could be Used to Predict Responses to Drugs, Say Researchers
Researchers show possibility to predict how different individuals would deal with one drug by looking at metabolites in their urine.
Tuesday, August 11, 2009
Glutamic Acid Linked to Lower Blood Pressure
The new research suggests that glutamic acid may be one of the components of vegetable protein linked to lower blood pressure.
Monday, July 06, 2009
On-the-spot DNA Analysis to Test Tolerance to Prescription Drugs Gets Closer
A handheld device to predict whether patients will respond adversely to medication is one step closer to the market.
Tuesday, February 17, 2009
Childhood Obesity Risk Increased 50 Percent by new Genetic Mutations, Says Study
Three new genetic mutations that together can increase a very young child's risk of becoming obese by 50 percent are revealed in a new study.
Wednesday, January 21, 2009
Common Mutations Linked to Common Obesity in Europeans
Scientists have discovered two common genetic mutations in people of European ancestry, which affect the production of several hormones controlling our appetite.
Monday, July 07, 2008
Causes of Disease Can Be Revealed By Metabolic Fingerprinting, According to 'Metabolome-Wide' Study
Your metabolic 'fingerprint' can reveal much about the possible causes of major diseases, according to the study published in the journal Nature.
Monday, April 21, 2008
Scientific News
New ACE-inhibiting Molecule Found in the Asparagus
Scientists have determined that sulfur-containing compounds in plants can inhibit ACE.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Shedding Light On Century-Old Biochemical Mystery
Yale scientists have used magnetic resonance measurements to show how glucose is metabolized in yeast to answer the puzzle of the “Warburg Effect.”
PTR-MS Breath Test Shows Potential for Detecting Liver Disease
Researchers at the University of Birmingham have published results that suggest a non-invasive breath test for liver disease using an IONICON PTR-MS.
Metabolon and BCM Show Metabolomics May Play Key Role in Precision Medicine
Metabolon’s technology enhances understanding of genetic data and improves health assessment in newly published study.
Newly Discovered Cells Restore Liver Damage in Mice Without Cancer Risk
The liver is unique among organs in its ability to regenerate after being damaged. Exactly how it repairs itself remained a mystery until recently, when researchers supported by the NIH discovered a type of cell in mice essential to the process
Study Finds Cutting Dietary Fat Reduces Body Fat More than Cutting Carbs
In a recent study, restricting dietary fat led to body fat loss at a rate 68 percent higher than cutting the same number of carbohydrate calories when adults with obesity ate strictly controlled diets.
Inappropriate Medical Food Use in Managing Patients with a Type of Metabolic Disorder
Researchers have proposed that there is a need for more rigorous clinical study of dietary management practices for patients with IEMs, including any associated long-term side effects, which may in turn result in the need to reformulate some medical foods.
Medical Researchers a Step Closer to Developing Anti-Obesity Pill
A weight loss pill could soon be possible thanks to the work of Deakin University medical researchers.
Engineered Bacterium Produces Important Industrial Chemical
A Korean research team has reported the production of 1,3-diaminopropane via fermentation of an engineered bacterium.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!