Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Clues about Cancer Cell Metabolism Emerge

Published: Tuesday, May 29, 2012
Last Updated: Tuesday, May 29, 2012
Bookmark and Share
Research from the Broad Institute and Massachusetts General Hospital has yielded the first large-scale atlas of cancer metabolism and points to a key role for glycine in cancer cell proliferation.

For almost a century, researchers have known that cancer cells have peculiar appetites, devouring glucose in ways that normal cells do not. But glucose uptake may tell only part of cancer’s metabolic story. Researchers from the Broad Institute and Massachusetts General Hospital looked across 60 well-studied cancer cell lines, analyzing which of more than 200 metabolites were consumed or released by the fastest dividing cells. Their research yields the first large-scale atlas of cancer metabolism and points to a key role for the smallest amino acid, glycine, in cancer cell proliferation. Their results appear in the May 25 issue of the journal Science.

“There’s growing interest in the role of metabolism in cancer, but studies to date have focused on one or two very specific pathways,” said senior author Vamsi Mootha, co-director of the Broad Institute’s Metabolism Program and a professor at Harvard Medical School and Massachusetts General Hospital. “We took an unbiased approach, looking at all of metabolism, and the glycine pathway emerged.”

Mootha and his colleagues developed a technique known as CORE (COnsumption and RElease) profiling, which allowed them to measure the flux of metabolites – the precursors and products of chemical reactions taking place in the body. Most of the time, when researchers measure metabolites, they are taking a snapshot of metabolite levels at a certain point in time. But, just as taking a photo of a highway will not reveal how fast traffic is moving, such measurements do not show which metabolites cells are rapidly consuming or expelling.

“Using CORE, we can quantitatively determine exactly how much of every metabolite is being consumed or released on a per-cell, per-hour basis,” said co-first author Mohit Jain, a postdoctoral fellow in the Mootha laboratory. “We can now start to derive flux or transport of nutrients into or out of the cell.”

The team applied CORE profiling to the NCI-60, a collection of 60 cancer cell lines that have been studied by the scientific community for many decades. Data about drug sensitivity, the activity of genes and proteins, rates of cell division, and much more are publicly available for these cell lines, which represent nine tumor types. The team’s compendium of information about metabolites has also been made publicly available.

One of the most striking results of the new data is how the pattern of glycine consumption relates to the speed of cancer-cell division. In the slowest dividing cells, small amounts of glyine are released into the culture media. But in cancer cells that are rapidly dividing, glycine is rapaciously consumed. The researchers note that very few metabolites have this unusual pattern of “crossing the zero line,” meaning that rapidly dividing cancer cells consume the metabolite while slowly dividing cells actually release it.

“The metabolic activities that enable cancer cells to proliferate quickly or slowly are poorly understood,” said Jain. “But across these 60 cell lines, we clearly see this association between how fast cells are dividing and how much glycine they are taking up.”

“The CORE method is a kind of screening effort,” said co-first author Roland Nilsson, who completed his postdoctoral work in the Mootha laboratory and is now at the Karolinska Institute. “It’s a way of searching for metabolic activities that might be interesting. You can take those and proceed to other experiments to validate.”

In addition to looking for metabolites that correlated with rates of cell division, the team also looked at the expression of almost 1,500 metabolic enzymes. Enzymes required for biosynthesis of glycine within the mitochondria were among the most highly correlated.

“We have two independent methods – metabolite profiling as well as gene expression profiling – both of which point to glycine metabolism as being important for rate of proliferation,” said Mootha.

To further validate and understand these results, the team observed what happened when the cancer cells were deprived of glycine, both by removing it from the media and by blocking the enzymes involved in glycine metabolism. In both cases, the fast dividing cancer cells slowed down, but the slower growing cancer cells were unaffected.

A limitation of observing such effects in cancer cells grown in the laboratory is that such cells may behave differently in the human body. One way the researchers followed up this work was to look at data available from studies of breast cancer patients over the last 25 years, searching for potential patterns between survival and the levels of enzymes involved in glycine metabolism.
They found that higher levels of these enzymes predicted poorer outcomes for patients.

The researchers envision many future directions for this work, including applying CORE profiling more broadly.

“This method offers a way of getting a quick overview of a particular cell type or tissue, allowing you to see what a cell requires to survive or grow,” said Nilsson. “We’re interested in applying this in other settings, to liver cells and muscle tissue and to study conditions such as diabetes. There are lots of potential applications.”

Funding for this work came from the National Institutes of Health and the Nestle Research Center. Other researchers who contributed to this work include Sonia Sharma, Nikhil Madhusudhan, Toshimori Kitami, Amanda Souza, Ran Kafri, Marc Kirschner, and Clary Clish.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Succinate Levels Linked to Immune Response and Inflammation
Metabolic intermediate plays major role in alerting the immune system - measuring succinate levels may prove effective diagnostic tool in cancer.
Tuesday, May 07, 2013
Work Flows from Advanced Large-Scale Methods for Measuring Proteins
Researchers have created the most comprehensive “parts list” to date for mitochondria, a compendium that includes nearly 1,100 proteins.
Thursday, July 17, 2008
Scientific News
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Microbiome May Hold the Key to Fighting Obesity
In a unique study of free-ranging brown bears, Swedish researchers were able to show that the bears’ dietary variation goes hand-in-hand with dramatic changes in the animal’s gut microbiota.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Why Do Some Infections Persist?
In preparing for the possibility of an antibiotic onslaught, some bacterial cultures adopt an all-for-one/one-for-all strategy that would make a socialist proud, University of Vermont researchers have found.
Flipping Molecular 'Switch' May Reduce Nicotine's Effects in the Brain
Scientists at The Scripps Research Institute (TSRI) have discovered that a lipid (fat molecule) in brain cells may act as a “switch” to increase or decrease the motivation to consume nicotine.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!