Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Brain Neurons and Diet Influence Onset of Obesity and Diabetes in Mice

Published: Friday, September 21, 2012
Last Updated: Friday, September 21, 2012
Bookmark and Share
Mice lacking AgRP-neurons adapt poorly to a carbohydrate diet and their metabolism seems better suited for feeding on fat.

The absence of a specific type of neuron in the brain can lead to obesity and diabetes in mice report researchers in The EMBO Journal. The outcome, however, depends on the type of diet that the animals are fed.

A lack of AgRP-neurons, brain cells known to be involved in the control of food intake, leads to obesity if mice are fed a regular carbohydrate diet.

However, animals that are deficient in AgRP-neurons but which are raised on a high-fat diet are leaner and healthier.

The differences are due to the influence of the AgRP-neurons on the way other tissues in the body break down and store nutrients.

“Susceptibility to obesity and other metabolic diseases is mostly thought to be due to complex genetic interactions and the radical environmental changes that have occurred during the last century. However, it is not just a question of what you eat and your genetic makeup but also how the body manages to convert, store and use food nutrients,” commented Serge Luquet, lead author of the study and a researcher at the French Centre National de la Recherche Scientifique (CNRS) Unit of Functional and Adaptive Biology, Université Paris Diderot, Sorbonne Paris Cité.

The scientists wanted to show if a primary setting in the brain might directly affect the relative balance that exists in peripheral tissue between storage, conversion and utilization of carbohydrate and lipids.

“The idea that we wanted to test in our experiments was whether the action of a specific type of brain cell known as the AgRP-neuron extended beyond its known influence on food intake. We found a new function for these cells, one that affects the communication with and activities of other tissues in the body including the liver, muscle and the pancreas,” added Luquet.

The researchers showed that mice that lacked AgRP-neurons from birth and which were fed on a regular carbohydrate diet had excessive body fat, increased amounts of the sugar-regulating hormone insulin, and normal levels of glucose in the blood.

When the same animals were fed a high fat diet they showed a reduced gain in body weight and improved glucose clearance in the blood.

“Our work shows that central circuits in the brain that control food intake also control how nutrients are used in peripheral organs of the body,” remarked Luquet. “This further role for AgRP-neurons might represent a core mechanism linking obesity and obesity-related diseases.”

The prevalence of obesity and other metabolic diseases is increasing rapidly and effective and safe treatments are urgently needed.

Obesity adversely affects health, decreases life expectancy, and increases the likelihood of other diseases including heart disease and type II diabetes.

“Understanding the mechanisms by which the brain controls how nutrients are metabolized and stored in peripheral organs may prove essential to achieving a clinical breakthrough for these debilitating diseases,” added Luquet.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

EMBO, EMBC and the National Science Council of Taiwan Sign Cooperation Agreement
New ways of global scientific interaction have been created following a cooperation agreement between EMBO, the European Molecular Biology Conference (EMBC), and the National Science Council of Taiwan (NSC).
Thursday, November 29, 2012
Scientific News
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Predicting Adverse Drug Reactions with Higher Confidence
A new integrated computational method helps predicting adverse drug reaction—which are often lethal—more reliably than with traditional computing methods.
A New Way to Starve Lung Cancer?
Metabolic alterations in lung cancer may open new avenues for treating the disease.
Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Building a Better Liposome
Computational models suggest new design for nanoparticles used in targeted drug delivery.
Breast Cancer Drug Beats Superbug
Tamoxifen helps white blood cells clear multidrug-resistant bacteria in lab and mouse studies.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos