Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>News>This Article

A Micro-RNA Causes Metabolic Problems in Obesity

Published: Tuesday, September 25, 2012
Last Updated: Tuesday, September 25, 2012
Bookmark and Share
Scientists have identified a key molecular player in a chain of events in the body that can lead to fatty liver disease, Type II diabetes and other metabolic abnormalities associated with obesity.

By blocking this molecule, the researchers were able to reverse some of the pathology it caused in obese mice.

Their findings appear in the Proceedings of the National Academy of Sciences.

MiR-34a (pronounced MEER-34a), a micro-RNA, occurs at higher than normal levels in the livers of obese animals and in human patients with fatty liver disease. In the new study, researchers discovered that miR-34a gums up production of a protein receptor, called beta-Klotho, needed for metabolic signaling in the liver. This hinders normal glucose uptake, glycogen and protein synthesis and other metabolic activities.

In response to signals from the small intestine, beta-Klotho contributes to normal liver function after a meal, said University of Illinois molecular and integrative physiology professor Jongsook Kim Kemper, who led the study. But in obesity, levels of miR-34a surge much higher than normal, resulting in abnormally low levels of beta-Klotho.

“The downstream effect is more glucose in the blood, more fat in the liver,” she said.

The effects are dramatic. Slices of liver tissue from obese mice are laden with fat, whereas normal mice have minimal amounts of fat in their livers.

The researchers used a complementary strand of RNA (called antisense RNA) to neutralize miR-34a in obese mice. This therapeutic approach improved “metabolic outcomes, including decreased liver fat and improved glucose level in the blood,” Kemper said.

The study team also included researchers from the Van Andel Research Institute in Grand Rapids, Mich. The National Institutes of Health and the American Diabetes Association supported this research.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Monday, November 16, 2015
Genome Mining Effort Discovers 19 New Natural Products in Four Years
Each of these products is a potential new drug. One of them has already been identified as an antibiotic.
Friday, September 11, 2015
Scientific News
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Predicting Adverse Drug Reactions with Higher Confidence
A new integrated computational method helps predicting adverse drug reaction—which are often lethal—more reliably than with traditional computing methods.
A New Way to Starve Lung Cancer?
Metabolic alterations in lung cancer may open new avenues for treating the disease.
Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Building a Better Liposome
Computational models suggest new design for nanoparticles used in targeted drug delivery.
Breast Cancer Drug Beats Superbug
Tamoxifen helps white blood cells clear multidrug-resistant bacteria in lab and mouse studies.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
New Protein Cleanup Factors Found to Control Bacterial Growth
UMass Amherst researchers characterize previously mysterious proteolysis factors.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos