Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Disabling Enzyme Cripples Tumors, Cancer Cells

Published: Thursday, September 05, 2013
Last Updated: Thursday, September 05, 2013
Bookmark and Share
Knocking out a single enzyme dramatically cripples the ability of aggressive cancer cells to spread and grow tumors.

The paper, published in the journal Proceedings of the National Academy of Sciences, sheds new light on the importance of lipids, a group of molecules that includes fatty acids and cholesterol, in the development of cancer.

Researchers have long known that cancer cells metabolize lipids differently than normal cells. Levels of ether lipids – a class of lipids that are harder to break down – are particularly elevated in highly malignant tumors, although the nature of that correlation has been unclear for decades.

“Cancer cells make and use a lot of fat and lipids, and that makes sense because cancer cells divide and proliferate at an accelerated rate, and to do that, they need lipids, which make up the membranes of the cell,” said study principal investigator Daniel Nomura, assistant professor in UC Berkeley’s Department of Nutritional Sciences and Toxicology. “Lipids have a variety of uses for cellular structure, but what we’re showing with our study is that lipids can also send signals that fuel cancer growth.”

In the study, Nomura and his team tested the effects of reducing ether lipids on human skin cancer cells and primary breast tumors. They targeted an enzyme, alkylglycerone phosphate synthase, or AGPS, known to be critical to the formation of ether lipids.

The researchers first confirmed that AGPS expression increased when normal cells turned cancerous. They then found that inactivating AGPS substantially reduced the aggressiveness of the cancer cells.

“The cancer cells were less able to move and invade,” said Nomura.

The researchers also compared the impact of disabling the AGPS enzyme in mice that had been injected with cancer cells.

“Among the mice that had the AGPS enzyme inactivated, the tumors were nonexistent,” said Nomura. “The mice that did not have this enzyme disabled rapidly developed tumors.”

The researchers determined that inhibiting AGPS expression depleted the cancer cells of ether lipids. They also found that AGPS altered levels of other types of lipids important to the ability of the cancer cells to survive and spread, including prostaglandins and acyl phospholipids.

“The effect on other lipids was unexpected and previously unknown,” said study lead author Daniel Benjamin, doctoral student in the Nomura Research Group. “Other studies have investigated specific lipid signaling pathways, but what makes AGPS stand out as a treatment target is that the enzyme seems to simultaneously regulate multiple aspects of lipid metabolism important for tumor growth and malignancy.”

Future steps include the development of AGPS inhibitors for use in cancer therapy, said Nomura.

“This study sheds considerable light on the important role that AGPS plays in ether lipid metabolism in cancer cells, and it suggests that inhibitors of this enzyme could impair tumor formation,” said Benjamin Cravatt, professor and chair of chemical physiology at The Scripps Research Institute, who is not part of the UC Berkeley study. Cravatt is an expert in the role enzymes play in human diseases.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Key Protein is Linked to Circadian Clocks, Helps Regulate Metabolism
Study sheds light on molecular basis for metabolic health and disease.
Wednesday, June 19, 2013
Gene Mutation Gives Boost to Brain Cancer Cells
An international team of researchers has found that a singular gene mutation helps brain cancer cells to not just survive, but grow tumors rapidly.
Monday, June 10, 2013
Researchers Engineer Metabolic Pathway in Mice to Prevent Diet-Induced Obesity
Researchers have constructed a non-native pathway in mice that increased fatty acid metabolism and resulted in resistance to diet-induced obesity.
Tuesday, June 09, 2009
Snails and Humans Use Same Genes to Tell Right from Left
Biologists have tracked down genes that control the handedness of snail shells, and they turn out to be similar to the genes used by humans to set up the left and right sides of the body.
Monday, December 29, 2008
Scientific News
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Microbiome May Hold the Key to Fighting Obesity
In a unique study of free-ranging brown bears, Swedish researchers were able to show that the bears’ dietary variation goes hand-in-hand with dramatic changes in the animal’s gut microbiota.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Why Do Some Infections Persist?
In preparing for the possibility of an antibiotic onslaught, some bacterial cultures adopt an all-for-one/one-for-all strategy that would make a socialist proud, University of Vermont researchers have found.
Flipping Molecular 'Switch' May Reduce Nicotine's Effects in the Brain
Scientists at The Scripps Research Institute (TSRI) have discovered that a lipid (fat molecule) in brain cells may act as a “switch” to increase or decrease the motivation to consume nicotine.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!