Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Disabling Enzyme Cripples Tumors, Cancer Cells

Published: Thursday, September 05, 2013
Last Updated: Thursday, September 05, 2013
Bookmark and Share
Knocking out a single enzyme dramatically cripples the ability of aggressive cancer cells to spread and grow tumors.

The paper, published in the journal Proceedings of the National Academy of Sciences, sheds new light on the importance of lipids, a group of molecules that includes fatty acids and cholesterol, in the development of cancer.

Researchers have long known that cancer cells metabolize lipids differently than normal cells. Levels of ether lipids – a class of lipids that are harder to break down – are particularly elevated in highly malignant tumors, although the nature of that correlation has been unclear for decades.

“Cancer cells make and use a lot of fat and lipids, and that makes sense because cancer cells divide and proliferate at an accelerated rate, and to do that, they need lipids, which make up the membranes of the cell,” said study principal investigator Daniel Nomura, assistant professor in UC Berkeley’s Department of Nutritional Sciences and Toxicology. “Lipids have a variety of uses for cellular structure, but what we’re showing with our study is that lipids can also send signals that fuel cancer growth.”

In the study, Nomura and his team tested the effects of reducing ether lipids on human skin cancer cells and primary breast tumors. They targeted an enzyme, alkylglycerone phosphate synthase, or AGPS, known to be critical to the formation of ether lipids.

The researchers first confirmed that AGPS expression increased when normal cells turned cancerous. They then found that inactivating AGPS substantially reduced the aggressiveness of the cancer cells.

“The cancer cells were less able to move and invade,” said Nomura.

The researchers also compared the impact of disabling the AGPS enzyme in mice that had been injected with cancer cells.

“Among the mice that had the AGPS enzyme inactivated, the tumors were nonexistent,” said Nomura. “The mice that did not have this enzyme disabled rapidly developed tumors.”

The researchers determined that inhibiting AGPS expression depleted the cancer cells of ether lipids. They also found that AGPS altered levels of other types of lipids important to the ability of the cancer cells to survive and spread, including prostaglandins and acyl phospholipids.

“The effect on other lipids was unexpected and previously unknown,” said study lead author Daniel Benjamin, doctoral student in the Nomura Research Group. “Other studies have investigated specific lipid signaling pathways, but what makes AGPS stand out as a treatment target is that the enzyme seems to simultaneously regulate multiple aspects of lipid metabolism important for tumor growth and malignancy.”

Future steps include the development of AGPS inhibitors for use in cancer therapy, said Nomura.

“This study sheds considerable light on the important role that AGPS plays in ether lipid metabolism in cancer cells, and it suggests that inhibitors of this enzyme could impair tumor formation,” said Benjamin Cravatt, professor and chair of chemical physiology at The Scripps Research Institute, who is not part of the UC Berkeley study. Cravatt is an expert in the role enzymes play in human diseases.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Key Protein is Linked to Circadian Clocks, Helps Regulate Metabolism
Study sheds light on molecular basis for metabolic health and disease.
Wednesday, June 19, 2013
Gene Mutation Gives Boost to Brain Cancer Cells
An international team of researchers has found that a singular gene mutation helps brain cancer cells to not just survive, but grow tumors rapidly.
Monday, June 10, 2013
Researchers Engineer Metabolic Pathway in Mice to Prevent Diet-Induced Obesity
Researchers have constructed a non-native pathway in mice that increased fatty acid metabolism and resulted in resistance to diet-induced obesity.
Tuesday, June 09, 2009
Snails and Humans Use Same Genes to Tell Right from Left
Biologists have tracked down genes that control the handedness of snail shells, and they turn out to be similar to the genes used by humans to set up the left and right sides of the body.
Monday, December 29, 2008
Scientific News
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Metabolomic Platform Reveals Fundamental Flaw in Common Lab Technology
A new study led by scientists at The Scripps Research Institute (TSRI) shows that a technology used in thousands of laboratories, called gas chromatography mass spectrometry (GC-MS), fundamentally alters the samples it analyzes.
Newly Identified Biochemical Pathway Could Be Target for Insulin Control
Researchers at Duke Medicine and the University of Alberta are reporting the identification of a new biochemical pathway to control insulin secretion from islet beta cells in the pancreas, establishing a potential target for insulin control.
Dirty,Crusty Meals Fit for (Long-Dormant) Microbes
Researchers apply the latest analytical techniques to further our understanding of desert biocrusts.
CSI -- On The Metabolite's Trail
Bioinformaticians at the University of Jena make the most efficient search engine for molecular structures available online.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Identifying The 'Dimmer Switch' Of Diabetes
University of Alberta research gives new insight into what causes Type 2 diabetes.
10 to 1: Bugs Win in NASA study
Bugs are winning out, and that's a good thing according to NASA's Human Research Program.
MYC Oncogene Disrupts Cancers Rhythm
Findings inform time-dependent treatment for reducing side effects and increasing effectiveness of cancer medications.
Keeping Gut Bacteria in Balance Could Help Delay Age-related Diseases
A new study suggests that analyzing intestinal bacteria could be a promising way to predict health outcomes as we age.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos