Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Link Between Obesity and Diabetes Found

Published: Monday, November 25, 2013
Last Updated: Monday, November 25, 2013
Bookmark and Share
Targeting a single enzyme that raises both sugar and insulin levels in the obese could prevent and treat diabetes.

A single overactive enzyme worsens the two core defects of diabetes—impaired insulin sensitivity and overproduction of glucose—suggesting that a drug targeting the enzyme could help correct both at once, according to mouse studies done by researchers at Columbia University Medical Center.  The findings were published today in the online edition of Cell Metabolism.

A drug that inhibits the enzyme, MK2, eventually could be added to metformin—the current first-line treatment for type 2 diabetes—to achieve better control over insulin and glucose levels than is possible with either drug alone, said the researchers.

“MK2’s compatibility with metformin makes it a very exciting potential drug target,” said Ira Tabas, MD, PhD, Richard J. Stock Professor and Vice Chair of Research in the Department of Medicine and professor of anatomy & cell biology (in physiology and cellular biophysics), who led the study with Lale Ozcan, PhD, associate research scientist.

“The one clear leader among drugs currently available for type 2 diabetes is metformin, which does a pretty good job of attacking both problems. But because metformin is often not enough, we need drugs that can be added to metformin—or used in patients who cannot tolerate metformin,” Dr. Tabas said. “If you take an obese, diabetic mouse and give it metformin, you get a partial improvement. If you give it an MK2-inhibitor, you also get a partial improvement. However, if you give both, the benefit is additive, which is consistent with our data that metformin and MK2 work through different biochemical pathways.”

The researchers’ earlier findings, on MK2’s effects on glucose, were published last year in the same journal.

Though both papers report the biochemical details of how MK2 works in mice, Drs. Tabas and Ozcan, working with surgeons Marc Bessler, MD, and Beth Schrope, MD, PhD, surgeons from NewYork-Presbyterian Hospital/Columbia University medical Center, also have recent unpublished data suggesting that MK2 is overactive in obese people, including those with pre-diabetes, but not in lean people. Moreover, the MK2 pathway is active in human liver cells, and, according to a large human genetic study called DIAGRAM, a key component of the pathway that activates MK2 is associated with diabetes.

About 25.8 million people in the U.S. and 347 million people worldwide have diabetes (mostly type 2). According to the Centers for Disease Control and Prevention, each year, about 6 percent of people with pre-diabetes develop type 2 diabetes; unless they make lifestyle changes, about 15 to 30 percent will develop diabetes within five years. “In addition to improving insulin sensitivity and glucose levels, our data suggest to us that a drug that inhibits MK2 could prevent the progression of pre-diabetes to full diabetes,” Dr. Tabas said.

Such a drug could protect the cells that produce insulin. “As the disease progresses, the insulin-producing cells have to put out more and more insulin to deal with the ever-increasing amounts of glucose in the bloodstream. Eventually, they burn out and the patient must use insulin,” Dr. Tabas said. “If we can protect the pancreas’s beta cells from the stress of dealing with high glucose, we may be able to prevent or delay progression to full diabetes.”

Drs. Tabas and Ozcan are planning to test this hypothesis with pre-diabetic mice.

Inhibiting MK2 also reduces cholesterol

Unpublished data from Drs. Tabas and Ozcan also suggest that MK2 inhibitors may not carry the cardiovascular risks associated with several newer diabetes drugs. Because of these risks, the FDA will not approve a new diabetes drug unless it has been found to be safe in large clinical trials designed to detect cardiovascular risk.

The Columbia researchers’ mouse studies show that MK2 inhibition reduces cholesterol, and other researchers have found that MK2 deficiency in mice protects against atherosclerosis. “A drug that inhibits MK2 may not just be heart-safe, but may actually be cardio-protective,” Dr. Tabas said.

He and Dr. Ozcan have created a company to develop compounds able to inhibit MK2.

“As with all drug development, it’s a long shot, but we think MK2 is less of a long shot than most.”

Drs. Tabas’ and Ozcan’s paper is titled, “Activation of Calcium/Calmodulin-Dependent Protein Kinase II in Obesity Mediates Suppression of Hepatic Insulin Signaling.”

This work was supported by NIH grants HL087123 and HL075662; American Heart Association Scientist Development Grant 11SDG5300022; NYONRC Pilot and Feasibility Grant DK26687; FAPESP/BEPE 2012/21290-4; German Center for Cardiovascular Research; the German Ministry of Education and Research; Deutsche Forschungsgemeinschaft BA 2258/2-1; European Commission FP7-Health-2010; and MEDIA-261409.  The basic science at the foundation of this work is part of a large NIH-sponsored program undertaken with two other CUMC professors, Domenico Accili, MD, and Alan Tall, MD, who have provided valuable guidance throughout these studies.

Drs. Ozcan and Tabas are among the co-founders of Tabomedex Biosciences LLC, which is developing inhibitors of the pathway described above for treatment of type 2 diabetes. The authors declare no additional financial or other conflicts of interest.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Type 1 Diabetes and Heart Disease Linked by Inflammatory Protein
Therapeutic agents that block the protein calprotectin could potentially reverse or slow the progression of atherosclerosis in people with type 1 diabetes.
Wednesday, May 08, 2013
Hundreds of Alterations and Potential Drug Targets to Starve Tumors Identified
Results should ramp up research into drugs that interfere with cancer metabolism.
Tuesday, April 30, 2013
Hundreds of Alterations and Potential Drug Targets to Starve Tumors Identified
A massive study analyzing gene expression data from 22 tumor types has identified multiple metabolic expression changes associated with cancer.
Monday, April 22, 2013
High Levels of Glutamate in Brain May Kick-Start Schizophrenia
An excess of the brain neurotransmitter glutamate may cause a transition to psychosis in people who are at risk for schizophrenia.
Thursday, April 18, 2013
Scientific News
How Different People Respond To Aspirin
Study findings could be used to help identify those who would benefit most from aspirin use.
Altered Metabolism of Four Compounds Drives Glioblastoma Growth
Findings suggest new ways to treat the malignancy, slow its progression and reveal its extent more precisely.
A Metabolic Twist that Drives Cancer Survival
A novel metabolic pathway that helps cancer cells thrive in conditions that are lethal to normal cells has been identified.
Liver-On-Chip Tracks Dynamics of Cellular Function
Hebrew University’s liver-on-chip platform is uniquely able to monitor metabolic changes indicating mitochondrial damage occurring at drug concentrations previously regarded as safe.
Living Off the Fat of the Land
Do cancer cells synthesize the parts for new cells or scavenge them from the environment?
Liver Disease, Obesity Linked
Kanazawa University researchers find similarities in the impeded signalling between central insulin activity and glucose production in the liver for both obese mice and mice that have had the vagus nerve removed.
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Gene Identified that May Worsen Cancer Outcome
Some patients with breast cancer, lung cancer and leukaemia seem to fare poorly after treatment because of the effects of a particular gene, a new study finds.
‘Big Data’ Drills Down Into Metabolic Details
Rice University bioengineers introduce efficient way to analyze, compare tissue-specific pathways.
New Approach to Curbing Cancer Cell Growth
Using a new approach, scientists at The Scripps Research Institute (TSRI) and collaborating institutions have discovered a novel drug candidate that could be used to treat certain types of breast cancer, lung cancer and melanoma.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!