Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Speeding Validation of Disease Targets

Published: Tuesday, February 04, 2014
Last Updated: Tuesday, February 04, 2014
Bookmark and Share
NIH, industry and non-profits join forces to develop new treatments earlier, beginning with Alzheimer’s, type 2 diabetes, and autoimmune disorders.

The National Institutes of Health, 10 biopharmaceutical companies and several nonprofit organizations today launched an unprecedented partnership to transform the current model for identifying and validating the most promising biological targets of disease for new diagnostics and drug development.

The Accelerating Medicines Partnership (AMP) aims to distinguish biological targets of disease most likely to respond to new therapies and characterize biological indicators of disease, known as biomarkers. Through the Foundation for the NIH (FNIH), AMP partners will invest more than $230 million over five years in the first projects, which focus on Alzheimer’s disease, type 2 diabetes, and the autoimmune disorders rheumatoid arthritis and systemic lupus erythematosus (lupus).

A critical and groundbreaking element of the partnership is the agreement that the data and analyses generated will be made publicly available to the broad biomedical community. The three- to five-year, milestone-driven pilot projects in these disease areas could set the stage for broadening AMP to other diseases and conditions.

“Patients and their caregivers are relying on science to find better and faster ways to detect and treat disease and improve their quality of life,” said NIH Director Francis S. Collins, M.D., Ph.D. “Currently, we are investing a great deal of money and time in avenues with high failure rates, while patients and their families wait. All sectors of the biomedical enterprise agree that new approaches are sorely needed.”

“The good news is that recent dramatic advances in basic research are opening new windows of opportunity for therapeutics,” continued Dr. Collins. “But this challenge is beyond the scope of any one of us and it’s time to work together in new ways to increase our collective odds of success. We believe this partnership is an important first step and represents the most sweeping effort to date to tackle this vital issue.”

As a result of technological revolutions in genomics, imaging, and more, researchers have been able to identify many changes in genes, proteins, and other molecules that predispose to disease and influence disease progression. While researchers have identified thousands of such biological changes that hold promise as biomarkers and drug targets, only a small number have been pursued. Choosing the wrong target can result in failures late in the development process, costing time, money, and ultimately, lives. Currently, developing a drug from early discovery through U.S. Food and Drug Administration approval takes well over a decade and has a failure rate of more than 95 percent. As a consequence, each success costs more than $1 billion.

“The AMP rallies scientific key players of the innovation ecosystem in a more unified way to address one of the key challenges to Biopharma drug discovery and development,” said Mikael Dolsten, M.D., Ph.D., President of Worldwide Research and Development at Pfizer. “This type of novel collaboration will leverage the strengths of both industry and NIH to ensure we expedite translation of scientific knowledge into next generation therapies to address the urgent needs of Alzheimer’s, diabetes and RA/lupus patients.”

AMP has been more than two years in the making, with intense interactions between scientists in the public and private sectors, progressive refinement of the goals, strategy development support from the Boston Consulting Group, and scientific project and partnership management by the FNIH. Through this effort, AMP partners have developed research plans and are sharing costs, expertise, and resources in an integrated governance structure that enables the best informed contributions to science from all participants.

The research highlights for each disease area are:

Alzheimer’s disease

• Identify biomarkers that can predict clinical outcomes by incorporating an expanded set of biomarkers into four major NIH-funded clinical trials, which include industry support, designed to delay or prevent disease.

• Conduct large-scale, systems biology analyses of human patient brain tissue samples with Alzheimer’s disease to validate biological targets that play key roles in disease progression, and increase understanding of molecular networks involved in the disease, to identify new potential therapeutic targets.

Type 2 diabetes

• Build a knowledge portal of DNA sequence, functional genomic and epigenomic information, and clinical data from studies on type 2 diabetes and its heart and kidney complications. The portal will include existing data and new data from studies involving 100,000–150,000 individuals. The rich collection of curated and collated information in this portal will provide an opportunity to identify the most promising therapeutic targets for diabetes from the growing mountain of potentially relevant data.

• Focus on DNA regions that might be critical for the development or progression of type 2 diabetes and search for natural variations in targeted populations that might predict the likelihood of success of drug development aimed at these targets.

Rheumatoid arthritis and lupus

• Collect and analyze tissue and blood samples from people with rheumatoid arthritis and lupus to pinpoint biological changes at the single cell level, to allow comparisons across the diseases and provide insights into key aspects of the disease process.

• Identify differences between rheumatoid arthritis patients who respond to current therapies and those who do not, and provide a better systems-level understanding of disease mechanisms in RA and lupus.

Highly collaborative steering committees with representation from public- and private-sector partners will be established for each disease area to oversee the research plans. The steering committees will be managed by FNIH under the direction of an AMP executive committee comprised of leaders from NIH, industry, the FDA, and patient advocacy organizations.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Newly Discovered Cells Restore Liver Damage in Mice Without Cancer Risk
The liver is unique among organs in its ability to regenerate after being damaged. Exactly how it repairs itself remained a mystery until recently, when researchers supported by the NIH discovered a type of cell in mice essential to the process
Monday, August 17, 2015
Study Finds Cutting Dietary Fat Reduces Body Fat More than Cutting Carbs
In a recent study, restricting dietary fat led to body fat loss at a rate 68 percent higher than cutting the same number of carbohydrate calories when adults with obesity ate strictly controlled diets.
Friday, August 14, 2015
Inappropriate Medical Food Use in Managing Patients with a Type of Metabolic Disorder
Researchers have proposed that there is a need for more rigorous clinical study of dietary management practices for patients with IEMs, including any associated long-term side effects, which may in turn result in the need to reformulate some medical foods.
Friday, August 14, 2015
Ease of Weight Loss Influenced by Individual Biology
NIH study finds varied responses to calorie restriction in obese adults.
Tuesday, May 12, 2015
Molecule Hijacks Enzyme To Boost Alcohol Metabolism
Study could lead to treatments for people with impaired acetaldehyde metabolism.
Tuesday, February 24, 2015
Underlying Genetics and Marker For Stroke Discovered
NIH-funded findings point to new potential strategies for disease prevention, treatment.
Friday, March 21, 2014
Metabolomics: Taking Aim at Diabetic Kidney Failure
Krolewski and his Joslin colleagues search for better ways of predicting which diabetic people are at risk for ESRD.
Saturday, February 08, 2014
Study to Examine if Vitamin D Prevents Diabetes
NIH-funded research will test the much-touted vitamin in people with prediabetes.
Monday, October 21, 2013
NIH Researchers Find Diabetes Drug Extends Health and Lifespan in Mice
Study was published in the July 30, 2013 issue of Nature Communications.
Thursday, September 05, 2013
Endocannabinoids Trigger Inflammation That Leads to Diabetes
NIH scientists identify possible treatment target for type 2 diabetes.
Thursday, August 22, 2013
Possible Treatment Target for Type 2 Diabetes Identified
Researchers at the NIH have clarified in rodent and test tube experiments the role that inflammation plays in type 2 diabetes, revealing a possible molecular target for treating the disease.
Tuesday, August 20, 2013
Diabetes Drug Extends Health and Lifespan in Mice
Long-term treatment with the type 2 diabetes drug metformin improves health and longevity of male mice when started at middle age.
Wednesday, July 31, 2013
Scientists Identify Molecular Link between Metabolism and Breast Cancer
A protein associated with conditions of metabolic imbalance, such as diabetes and obesity, may play a role in the development of aggressive forms of breast cancer.
Wednesday, February 06, 2013
NIH Announces New Program in Metabolomics
The National Institutes of Health will invest $14.3 million this year with the potential to invest more than $51.4 million over five years.
Friday, September 21, 2012
U.S. and India Sign Joint Statement
The statement provides greater opportunities for collaborative projects ranging from research to identify genes for diabetes to bettering public health efforts to manage and treat of diabetes.
Friday, June 22, 2012
Scientific News
Newly Identified Biochemical Pathway Could Be Target for Insulin Control
Researchers at Duke Medicine and the University of Alberta are reporting the identification of a new biochemical pathway to control insulin secretion from islet beta cells in the pancreas, establishing a potential target for insulin control.
Dirty,Crusty Meals Fit for (Long-Dormant) Microbes
Researchers apply the latest analytical techniques to further our understanding of desert biocrusts.
CSI -- On The Metabolite's Trail
Bioinformaticians at the University of Jena make the most efficient search engine for molecular structures available online.
Developing a Breathalyzer-Type Low Blood Sugar Warning Device For Diabetes
A multidisciplinary team of researchers at Indiana University-Purdue University Indianapolis has been awarded a $738,000 National Science Foundation grant to develop a breathalyzer-type device to detect the onset of hypoglycemia, or low blood sugar episodes, in people with diabetes.
Identifying The 'Dimmer Switch' Of Diabetes
University of Alberta research gives new insight into what causes Type 2 diabetes.
10 to 1: Bugs Win in NASA study
Bugs are winning out, and that's a good thing according to NASA's Human Research Program.
MYC Oncogene Disrupts Cancers Rhythm
Findings inform time-dependent treatment for reducing side effects and increasing effectiveness of cancer medications.
Keeping Gut Bacteria in Balance Could Help Delay Age-related Diseases
A new study suggests that analyzing intestinal bacteria could be a promising way to predict health outcomes as we age.
Genome Mining Effort Discovers 19 New Natural Products in Four Years
Each of these products is a potential new drug. One of them has already been identified as an antibiotic.
New CRISPR-Cas9 Strategy Edits Genes Two Ways
A team of Harvard and MIT researchers have developed a way to perform genome engineering and gene regulation at the same time.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos