Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Pain Killers May Improve Health of Diabetics and the Obese

Published: Thursday, May 22, 2014
Last Updated: Tuesday, May 27, 2014
Bookmark and Share
Blocking a pain receptor in mice extends lifespan and gives improved insulin response.

Blocking a pain receptor in mice not only extends their lifespan, it also gives them a more youthful metabolism, including an improved insulin response that allows them to deal better with high blood sugar.

“We think that blocking this pain receptor and pathway could be very, very useful not only for relieving pain, but for improving lifespan and metabolic health, and in particular for treating diabetes and obesity in humans,” said Andrew Dillin, a professor of molecular and cell biology at the University of California, Berkeley, and senior author of a new paper describing these results. “As humans age they report a higher incidence of pain, suggesting that pain might drive the aging process.”
Chile peppers, the source of capsaicin, which overstimulates pain receptors on nerve cells and often kills them. Lack of these capsaicin receptors is associated with longer lifespan and improved health. Photo by Celine Riera, UC Berkeley.

The “hot” compound in chili peppers, capsaicin, is already known to activate this pain receptor, called TRPV1 (transient receptor potential cation channel subfamily V member 1). In fact, TRPV1 is often called the capsaicin receptor. Constant activation of the receptor on a nerve cell results in death of the neuron, mimicking loss of TRPV1, which could explain why diets rich in capsaicin have been linked to a lower incidence of diabetes and metabolic problems in humans.

More relevant therapeutically, however, is an anti-migraine drug already on the market that inhibits a protein called CGRP that is triggered by TRPV1, producing an effect similar to that caused by blocking TRPV1. Dillin showed that giving this drug to older mice restored their metabolic health to that of younger mice.

“Our findings suggest that pharmacological manipulation of TRPV1 and CGRP may improve metabolic health and longevity,” said Dillin, who is a Howard Hughes Medical Institute investigator and the Thomas and Stacey Siebel Distinguished Chair in Stem Cell Research. “Alternatively, chronic ingestion of compounds that affect TRPV1 might help prevent metabolic decline with age and lead to increased longevity in humans.”

Dillin and his colleagues at UC Berkeley and The Salk Institute for Biological Studies in La Jolla, Calif., will publish their results in the May 22 issue of the journal Cell.

Pain and obesity

TRPV1 is a receptor found in the skin, nerves and joints that reacts to extremely high temperatures and other painful stimuli. The receptor is also found in nerve fibers that contact the pancreas, where it stimulates the release of substances that cause inflammation or, like CGRP (calcitonin gene-related peptide), prevent insulin release. Insulin promotes the uptake of sugar from the blood and storage in the body’s tissue, including fat.

Past research has shown that mice lacking TRPV1 are protected against diet-induced obesity, suggesting that this receptor plays a role in metabolism. Disrupting sensory perception also increases longevity in worms and flies. But until now, it was not known whether sensory perception also affects aging in mammals.

Dillin and his team have now found that mice genetically manipulated to lack TRPV1 receptors lived, on average, nearly four months – or about 14 percent – longer than normal mice. The TRPV1-deficient mice also showed signs of a youthful metabolism late in life, due to low levels of CGRP — a molecule that blocks insulin release resulting in increased blood glucose levels and thus could contribute to the development of type 2 diabetes. Throughout aging, these mice showed improved ability to quickly clear sugar from the blood as well as signs that they could burn more calories without increasing exercise levels.

Moreover, old mice treated with the anti-migraine drug, which inhibits the activity of CGRP receptors, showed a more youthful metabolic profile than untreated old mice.
UC Berkeley and The Salk Institute filed a patent May 16 on the technology described in the Cell paper. Dillin plans to continue his studies of the effects of TRPV1 and CGRP blockers on mice and, if possible, humans.



Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
New ACE-inhibiting Molecule Found in the Asparagus
Scientists have determined that sulfur-containing compounds in plants can inhibit ACE.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Shedding Light On Century-Old Biochemical Mystery
Yale scientists have used magnetic resonance measurements to show how glucose is metabolized in yeast to answer the puzzle of the “Warburg Effect.”
PTR-MS Breath Test Shows Potential for Detecting Liver Disease
Researchers at the University of Birmingham have published results that suggest a non-invasive breath test for liver disease using an IONICON PTR-MS.
Metabolon and BCM Show Metabolomics May Play Key Role in Precision Medicine
Metabolon’s technology enhances understanding of genetic data and improves health assessment in newly published study.
Newly Discovered Cells Restore Liver Damage in Mice Without Cancer Risk
The liver is unique among organs in its ability to regenerate after being damaged. Exactly how it repairs itself remained a mystery until recently, when researchers supported by the NIH discovered a type of cell in mice essential to the process
Study Finds Cutting Dietary Fat Reduces Body Fat More than Cutting Carbs
In a recent study, restricting dietary fat led to body fat loss at a rate 68 percent higher than cutting the same number of carbohydrate calories when adults with obesity ate strictly controlled diets.
Inappropriate Medical Food Use in Managing Patients with a Type of Metabolic Disorder
Researchers have proposed that there is a need for more rigorous clinical study of dietary management practices for patients with IEMs, including any associated long-term side effects, which may in turn result in the need to reformulate some medical foods.
Medical Researchers a Step Closer to Developing Anti-Obesity Pill
A weight loss pill could soon be possible thanks to the work of Deakin University medical researchers.
Engineered Bacterium Produces Important Industrial Chemical
A Korean research team has reported the production of 1,3-diaminopropane via fermentation of an engineered bacterium.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!