Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fatty Liver Disease Prevented in Mice

Published: Monday, June 02, 2014
Last Updated: Tuesday, June 03, 2014
Bookmark and Share
Blocking a path that delivers dietary fructose to the liver prevented mice from developing the condition, according to investigators.

Studying mice, researchers have found a way to prevent nonalcoholic fatty liver disease, the most common cause of chronic liver disease worldwide. Blocking a path that delivers dietary fructose to the liver prevented mice from developing the condition, according to investigators at Washington University School of Medicine in St. Louis.

The study appears in a recent issue of The Journal of Biological Chemistry.

In people, nonalcoholic fatty liver disease often accompanies obesity, elevated blood sugar, high blood pressure and other markers of metabolic syndrome. Some estimate as many as 1 billion people worldwide have fatty liver disease, though some may not realize it.

“Fatty liver disease is a major topic of research right now,” said first author Brian J. DeBosch, MD, PhD, clinical fellow in pediatric gastroenterology. “There are competing hypotheses about the origins of metabolic syndrome. One of these hypotheses is that insulin resistance begins to develop in the liver first. The thought is if we can prevent the liver from becoming unhealthy to begin with, maybe we can block the entire process from moving forward.”

The research team, led by Kelle H. Moley, MD, the James P. Crane Professor of Obstetrics and Gynecology, showed that a molecule called GLUT8 carries large amounts of fructose into liver cells. Fructose is a type of sugar found in many foods. It is present naturally in fruit and is added to soft drinks and myriad other products in the form of high-fructose corn syrup.

Scientists have known that fructose is processed in the liver and stored there as fat in the form of triglycerides. In this study, researchers showed that blocking or eliminating GLUT8 in mice reduced the amount of fructose entering the organ and appeared to prevent the development of fatty livers. Mice with GLUT8 deficiency also appeared to burn liver fat at a faster rate than control mice.
“We showed that GLUT8 is required for fructose to get into the liver,” DeBosch said. “If you take away or block this transporter in mice, they no longer get diet-induced fatty liver disease.”

The researchers also saw differences between male and female mice in the degree to which they were protected from fatty livers and in whole-body metabolism. Male mice fed a high-fructose diet while deficient in GLUT8 still had evidence of fatty liver disease, but whole-body metabolism was healthy. They showed no evidence of metabolic syndrome in the rest of the body. Females fed fructose while lacking GLUT8, in contrast, had healthy looking livers but exhibited more evidence of whole-body metabolic syndrome.

“If the fructose doesn’t go into the liver, it may go to peripheral tissues,” DeBosch said. “Female mice with a GLUT8 deficiency had increased body fat. They also had increased circulating triglycerides and cholesterol.

“So the liver is healthier in female rodents, but you could argue that the whole body has worse overall metabolic syndrome,” he said. “This supports the idea of the liver acting as a sort of sink for processing fructose. The liver protects the whole body, but it may do so at its own expense.”

While DeBosch said future therapeutics might be able to target GLUT8 to block fructose from entering the liver, more work must be done to understand how this would impact the rest of the body.

“In a perfect world, it would be good if we could figure out a way to direct fructose to tissues in which you’re more likely to burn it than store it, such as in skeletal muscle,” he said.
In the meantime, DeBosch advises his pediatric patients, many of whom are overweight or obese, to avoid fructose, especially sugar-sweetened drinks, and to find ways to increase physical activity.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Researchers Find Key Player in Diabetic Kidney Disease Through Power of Metabolomics
Discovery could lead to new and better diagnostic marker for chronic kidney disease.
Can Cell Cycle Protein Prevent or Kill Breast Cancer Tumors?
An MD Anderson study has shown the potential of a simple molecule involved in cancer metabolism as a powerful therapeutic.
Study Reveals Improved Way to Interpret High-Throughput Biological Data
A recent study has revealed a novel workflow, identifying associations between molecules to provide insights into cellular metabolism and gene expression in complex biological systems.
Optical 'Dog's Nose' Developed to Detect Cancer, Other Diseases
Researchers are using optical spectroscopy to develop a quick, non-invasive “breath test” they believe will have the potential to screen for a variety of diseases, including diabetes, infections and cancers.
Researchers Link Liver Disease and Drug Metabolism
Researchers have discovered that nonalcoholic steatohepatitis, an increasingly common but often undiagnosed liver disease, could have significant medical implications for people with type 2 diabetes.
Scientists Create Synthetic Membranes That Grow Like Living Cells
Chemists and biologists at UC San Diego have succeeded in designing and synthesizing an artificial cell membrane capable of sustaining continual growth, just like a living cell.
Potential New Class of Cancer Drugs
Scientists have found a way to stop cancer cell growth by targeting the Warburg Effect, a trait of cancer cell metabolism that scientists have been eager to exploit.
Team Led by TSRI Scientists Shows AIDS Vaccine Candidate Successfully ‘Primes’ Immune System
New research shows that an experimental vaccine candidate can stimulate immune activity necessary to prevent HIV infection.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!