Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

World’s Highest Field 21 Tesla Magnet Installed

Published: Monday, June 16, 2014
Last Updated: Monday, June 16, 2014
Bookmark and Share
The FT-ICR Mass Spectrometry magnet has been installed at National High Magnetic Field Laboratory (NHMFL).

Bruker Corporation and the National High Magnetic Field Laboratory at Florida State University today announced the successful installation of the world’s first 21 Tesla (T) magnet for Fourier Transform Ion Cyclotron Resonance (FT-ICR).  The installation represents the world’s highest field, persistent, superconducting magnet suitable for FT-ICR mass spectrometry, which is also often referred to as FTMS. The 21T magnet was designed and built by Bruker in collaboration with NHMFL scientists, and will be used in the NHMFL FT-ICR program in a project funded by the National Science Foundation, which makes cutting edge FT-ICR technologies available to the larger community of scientists.

FT-ICR is by far the highest resolution mass spectrometry technique available, and is useful in the analysis of extremely complex mixtures, including applications in petroleomics, dissolved organic matter (DOM), metabolomics, top-down proteomics, and MALDI imaging.  The performance of FT-ICR systems improves with increasing magnetic field, and the 21T magnet is expected to enable further dramatic improvements in mass resolution, mass accuracy and dynamic range compared to the previous highest field of 15T.  The ICR Program at the NHMFL is a world leader in instrument and technique development, as well as the pursuit for novel applications of FT-ICR mass spectrometry.  

Professor Alan Marshall, the Robert O. Lawton Professor of Chemistry and Biochemistry at Florida State University and Director of the High Field FT-ICR program at the NHMFL, commented: “We are delighted to report that the 21T Bruker magnet is at full field.  The other subsystems of the 21T FT-ICR mass spectrometer have been designed and are currently being assembled, for availability targeted for early fall of 2014.”

Professor Marshall added: “Three primary science drivers for this instrument are:  (a) faster throughput without loss of mass resolution for top-down proteomics; (b) extension of the size and complexity of protein complexes whose contact surfaces are mapped by solution-phase hydrogen/deuterium exchange, and (c) improved mass resolution and dynamic range for characterizing compositionally complex organic mixtures (petroleum, dissolved organic matter, metabolome).  The higher magnetic field should result in dramatic improvement (by factors of 40-100%) in FT-ICR MS figures of merit, including mass resolution and resolving power, mass accuracy, dynamic range, and data acquisition speed.”

The 21 T magnet design offers a 110 mm room temperature horizontal bore, with fringe field profiles and room temperature bore access optimized for FT-ICR MS.  It includes many design features pioneered by Bruker, including operation at ~2 Kelvin by use of Bruker’s unique UltraStabilized™ sub-cooling technology, the UltraShield™ technology to reduce stray fields, as well as novel active magnet refrigeration technology that virtually eliminates cryogen refills and user maintenance of the magnet.  In addition to FTMS, the 21T magnet is also suitable for ultra-high field preclinical MRI for highest sensitivity and resolution in mouse neuroimaging.

Dr. Gerhard Roth, the Bruker Ultra-High Field Magnet Manager, said: “The 21T FT-ICR magnet is based on the wealth of experience gathered in ultra-high field magnet technology for NMR and for MRI magnets.  Bruker is extremely pleased to supply this cutting-edge 21T magnet to enable new scientific research directions in ultra-high field FT-ICR mass spectrometry.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

PREMIER Biosoft Announces Reseller Agreement with Bruker
Agreement aims to advance lipidomics and metabolomics research.
Monday, November 17, 2014
Bruker Reports 7% Revenue Growth in Q4
Bruker Corporation reported financial results for its fourth quarter and full year ended December 31, 2013.
Wednesday, February 19, 2014
Novel Approach for Inborn Errors of Metabolism Screening by NMR
Clinical IEM-by-NMR screening study in Turkey measures 65 metabolites in urine simultaneously, including 20 endogeneous metabolites and 45 metabolites associated with inborn errors of metabolism.
Wednesday, September 04, 2013
Scientific News
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
Toxicity Testing With Cultured Liver Cells
Microreactor replaces animal testing.
Proteins Seek, Attack, Destroy Tumor Cells in Bloodstream
Using white blood cells to ferry potent cancer-killing proteins through the bloodstream virtually eliminates metastatic prostate cancer in mice, Cornell researchers have confirmed.
Why Do Some Infections Persist?
In preparing for the possibility of an antibiotic onslaught, some bacterial cultures adopt an all-for-one/one-for-all strategy that would make a socialist proud, University of Vermont researchers have found.
Flipping Molecular 'Switch' May Reduce Nicotine's Effects in the Brain
Scientists at The Scripps Research Institute (TSRI) have discovered that a lipid (fat molecule) in brain cells may act as a “switch” to increase or decrease the motivation to consume nicotine.
TSRI Team Comes Together with Rare Disease Community
Don’t worry, science fiction fans, the machines aren’t taking over quite yet. It turns out humans still beat computers at reading and comprehending text.
Magnesium Intake May Reduce Pancreatic Cancer Risk
Indiana University researchers have found that magnesium intake may be beneficial in preventing pancreatic cancer.
Gut Microbes: Burning Calories While You Sleep?
Study links changes in gut bacteria to lower resting metabolic rate and weight gain in mice.
Cooperating Bacteria Isolate Cheaters
Bacteria, which reciprocally exchange amino acids, stabilize their partnership on two-dimensional surfaces and limit the access of non-cooperating bacteria to the exchanged nutrients.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!