Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>News>This Article

A New Player in Lipid Metabolism Discovered

Published: Monday, August 18, 2014
Last Updated: Monday, August 18, 2014
Bookmark and Share
Specially engineered mice gained no weight, and normal counterparts became obese on the same high-fat, obesity-inducing Western diet.

Specially engineered mice that lacked a particular gene did not gain weight when fed a typical high-fat, obesity-inducing Western diet. Yet, these mice ate the same amount as their normal counterparts that became obese.

The mice were engineered with fat cells that lacked a gene called SEL1L, known to be involved in the clearance of misfolded proteins in the cell’s protein making machinery called the endoplasmic reticulum (ER).

When misfolded proteins are not cleared but accumulate, they destroy the cell and contribute to such diseases as mad cow disease, Type 1 diabetes and cystic fibrosis.

“The million-dollar question is why don’t these mice gain weight? Is this related to its inability to clear misfolded proteins in the ER?” said Ling Qi, associate professor of molecular and biochemical nutrition and senior author of the study published online July 24 in Cell Metabolism. Haibo Sha, a research associate in Qi’s lab, is the paper’s lead author.

Interestingly, the experimental mice developed a host of other problems, including postprandial hypertriglyceridemia, which is characterized by high levels of triglycerides in humans and mice (after a meal) that can lead to heart attacks and strokes if untreated, and fatty livers.

“Although we are yet to find out whether these conditions contribute to the lean phenotype, we found that there was a lipid partitioning defect in the mice lacking SEL1L in fat cells, where fat cells cannot store fat [lipids], and consequently fat goes to the liver. During the investigation of possible underlying mechanisms, we discovered a novel function for SEL1L as a regulator of lipid metabolism,” said Qi.

“We were very excited to find that SEL1L is required for the intracellular trafficking of an enzyme called lipoprotein lipase (LPL), acting as a chaperone,” said Sha. “Using several tissue-specific knockout mouse models, we showed that this is a general phenomenon,” Sha added.

Without LPL, lipids remain in the circulation; fat and muscle cells cannot absorb fat molecules for storage and energy combustion, respectively. Many humans have LPL mutations and develop postprandial hypertriglyceridemia similar to conditions found in fat cell-specific SEL1L-deficient mice, said Qi.

Future work will investigate the role of SEL1L in human patients carrying LPL mutations and determine why fat cell-specific SEL1L-deficient mice remain lean under Western diets, said Sha.

Co-authors include researchers from Cedars-Sinai Medical Center in Los Angeles; Wageningen University in the Netherlands; Georgia State University; University of California, Los Angeles; and the Medical College of Soochow University in China.

The study was funded by the U.S. National Institutes of Health, the Netherlands Organization for Health Research and Development National Institutes of Health, the Cedars-Sinai Medical Center, Chinese National Science Foundation, the American Diabetes Association, Cornell’s Center for Vertebrate Genomics and the Howard Hughes Medical Institute.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

TB Bacteria's Trash-Eating Inspires Search for New Drugs
When hijacking a garbage truck, one might as well make use of the trash. That logic drives how tuberculosis-causing bacteria feed, say Cornell scientists.
Tuesday, June 11, 2013
Scientific News
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Predicting Adverse Drug Reactions with Higher Confidence
A new integrated computational method helps predicting adverse drug reaction—which are often lethal—more reliably than with traditional computing methods.
A New Way to Starve Lung Cancer?
Metabolic alterations in lung cancer may open new avenues for treating the disease.
Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Building a Better Liposome
Computational models suggest new design for nanoparticles used in targeted drug delivery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos