Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Single Enzyme is Necessary for Development of Diabetes

Published: Wednesday, August 20, 2014
Last Updated: Wednesday, August 20, 2014
Bookmark and Share
12-LO enzyme promotes the obesity-induced oxidative stress in the pancreatic cells.

An enzyme called 12-LO promotes the obesity-induced oxidative stress in the pancreatic cells that leads to pre-diabetes, and diabetes. 12-LO’s enzymatic action is the last step in the production of certain small molecules that harm the cell, according to a team from Indiana University School of Medicine, Indianapolis.

The findings will enable the development of drugs that can interfere with this enzyme, preventing or even reversing diabetes. The research is published ahead of print in the journal Molecular and Cellular Biology.

Nearly 40 percent of Americans-more than 120 million people-have diabetes or pre-diabetes. Diabetes results when the pancreas fails to produce sufficient insulin to remove sugar from the blood.

“We surmised that when individuals eat high fat foods and become overweight, the beta cells of their pancreases fail to produce sufficient insulin,” says principal investigator Raghavendra Mirmira. In earlier studies, these researchers and their collaborators at Eastern Virginia Medical School showed that 12-LO (which stands for 12-lipoxygenase) is present in these cells only in people who become overweight.

The harmful small molecules resulting from 12-LO’s enzymatic action are known as HETEs, short for hydroxyeicosatetraenoic acid. HETEs harm the mitochondria, which then fail to produce sufficient energy to enable the pancreatic cells to manufacture the necessary quantities of insulin.

For the study, the investigators genetically engineered mice that lacked the gene for 12-LO exclusively in their pancreas cells. Mice were either fed a low-fat or high-fat diet.

Both the control mice and the knockout mice on the high fat diet developed obesity and insulin resistance. The investigators also examined the pancreatic beta cells of both knockout and control mice, using both microscopic studies and molecular analysis. Those from the knockout mice were intact and healthy, while those from the control mice showed oxidative damage, demonstrating that 12-LO and the resulting HETEs caused the beta cell failure.

Mirmira notes that fatty diet used in the study was the Western Diet, which comprises mostly saturated-“bad”-fats. Based partly on a recent study of related metabolic pathways, he says that the unsaturated and mono-unsaturated fats-which comprise most fats in the healthy, relatively high fat Mediterranean diet-are unlikely to have the same effects.

“Our research is the first to show that 12-LO in the beta cell is the culprit in the development of pre-diabetes, following high fat diets,” says Mirmira. “Our work also lends important credence to the notion that the beta cell is the primary defective cell in virtually all forms of diabetes and pre-diabetes.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Predicting Adverse Drug Reactions with Higher Confidence
A new integrated computational method helps predicting adverse drug reaction—which are often lethal—more reliably than with traditional computing methods.
A New Way to Starve Lung Cancer?
Metabolic alterations in lung cancer may open new avenues for treating the disease.
Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Building a Better Liposome
Computational models suggest new design for nanoparticles used in targeted drug delivery.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos