Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>News>This Article

Childhood Obesity Risk Increased 50 Percent by new Genetic Mutations, Says Study

Published: Wednesday, January 21, 2009
Last Updated: Thursday, January 22, 2009
Bookmark and Share
Three new genetic mutations that together can increase a very young child's risk of becoming obese by 50 percent are revealed in a new study.

Three new genetic mutations that together can increase a very young child's risk of becoming obese by 50 percent are revealed in a new study, published in the journal Nature Genetics.

Together with existing research, the new findings should ultimately provide the tools to predict which young children are at risk of becoming obese. Health professionals could then intervene to help such children before they develop weight problems, say the researchers from Imperial College London, the French National Research Institute CNRS and other international institutions.

In the UK, one four or five year old in every ten is obese, according to the Department of Health's National Child Measurement Programme 2007/08.

For today's ten-year study, scientists looked at the genetic makeup of obese children under six and morbidly obese adults, most of whom had been obese since childhood or adolescence, and compared this with age matched people of normal weight. The study reveals three previously unidentified genetic variations that increase the risk of severe obesity significantly, giving new insight into the reasons why some people become obese and others do not.

The mutation most strongly associated with childhood obesity and adult morbid obesity in the study is located near the PTER gene, the function of which is not known. Children with this mutation, called rs10508503, have a 34.1% increased risk of obesity, while adults with the same mutation are 20.6% more likely to be morbidly obese, according to the research.

The second mutation associated with child and adult obesity, called rs1805081, is found in the NPC1 gene. Previous studies in mice have suggested that this gene has a role in controlling appetite, as mice with a non-functioning NPC1 gene suffer late-onset weight loss and have poor food intake. The mutation in this gene increases the risk of childhood obesity by 9.6% and of adult morbid obesity by 13.6%.

The final mutation, rs1424233, is found near the MAF gene, which controls the production of the hormones insulin and glucagon, as well as chains of amino acids called glucagon-like peptides. These hormones and peptides are known to play key roles in people's metabolisms by metabolizing glucose and carbohydrates in the body.

In addition, glucagon and glucagon-like peptides appear to have a strong effect on people's ability to feel 'full' or satiated after eating. Children with the rs1424233 mutation have a 5.7% increased risk of early-onset obesity and adults have a 16.1% increased risk of becoming morbidly obese.

The increased risk of obesity is additive, so adults with all three mutations have a 50.3% increased risk of being morbidly obese and children with all three mutations have a 49.4% increased risk of early onset obesity.

Professor Philippe Froguel, the corresponding author of the study from the Department of Genomic Medicine at Imperial College London, said: "When young children become obese, their lives can be affected in a very negative way. Sadly, obese children are often unfairly stigmatized and they can suffer heart and lung problems, painful joints, diabetes and cancer as they grow up.

"Understanding the genetic basis of obesity is the first step towards helping these children. Once we identify the genes responsible, we can develop ways to screen children to find out who is most at risk of becoming obese. Hopefully we can then intervene with measures such as behavioral therapy, to make sure a child forms healthy eating habits and does not develop a weight problem," added Professor Froguel. 

The researchers reached their conclusions by conducting a genome-wide association study of 1,380 Europeans with early-onset childhood obesity and adult morbid obesity, and 1,416 age-matched normal weight controls. The study revealed 38 genetic markers with a strong association to a higher than normal body mass index, which the researchers evaluated in 14,186 Europeans, identifying three mutations that are significantly linked to obesity.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Urine Profiles Provide Clues To How Obesity Causes Disease
Scientists have identified chemical markers in urine associated with body mass, providing insights into how obesity causes disease.
Thursday, April 30, 2015
Light-activated Drug Could Reduce Side Effects of Diabetes Medication
Scientists have created a drug for type 2 diabetes that is switched on by blue light, which they hope will improve treatment of the disease.
Thursday, October 16, 2014
Metabolic 'Fingerprinting' of Tumours Could Help Bowel Cancer Patients
New research makes it possible to see how advanced a bowel cancer is by looking at its metabolic 'fingerprint.'
Tuesday, August 13, 2013
New Laboratory Aims to Revolutionise Surgery with Real-Time Metabolic Profiling
Metabolic profiling of tissue samples could transform the way surgeons make decisions in the operating theatre, say researchers at a new laboratory being launched today.
Thursday, January 13, 2011
Some Morbidly Obese People are Missing Genes, Shows New Research
According to the new findings, around seven in every thousand morbidly obese people are missing a part of their DNA.
Friday, February 05, 2010
Heart Rhythm Gene Revealed in new Research
Discovery could help scientists design more targeted drugs to prevent and treat certain heart problems.
Monday, January 11, 2010
Research Reveals Exactly How Coughing is Triggered by Environmental Irritants
Scientists identify the reaction inside the lungs that can trigger coughing when a person is exposed to particular irritants in the air.
Monday, November 23, 2009
Ironing Out the Genetic Cause of Hemoglobin Problems
A gene with a significant effect on regulating hemoglobin in the body has been identified as part of a genome-wide association study.
Monday, October 12, 2009
Scientists Discover new Genetic Variation that Contributes to Diabetes
Study identifies a genetic variation in people with type 2 diabetes that affects how the body's muscle cells respond to the hormone insulin.
Tuesday, September 08, 2009
Think Zinc: Molecular Sensor Could Reveal Zinc's Role in Diseases
Scientists develop a new molecular sensor to analyze the amount of zinc in cells.
Tuesday, September 08, 2009
Urine Samples could be Used to Predict Responses to Drugs, Say Researchers
Researchers show possibility to predict how different individuals would deal with one drug by looking at metabolites in their urine.
Tuesday, August 11, 2009
Glutamic Acid Linked to Lower Blood Pressure
The new research suggests that glutamic acid may be one of the components of vegetable protein linked to lower blood pressure.
Monday, July 06, 2009
On-the-spot DNA Analysis to Test Tolerance to Prescription Drugs Gets Closer
A handheld device to predict whether patients will respond adversely to medication is one step closer to the market.
Tuesday, February 17, 2009
Common Mutations Linked to Common Obesity in Europeans
Scientists have discovered two common genetic mutations in people of European ancestry, which affect the production of several hormones controlling our appetite.
Monday, July 07, 2008
Causes of Disease Can Be Revealed By Metabolic Fingerprinting, According to 'Metabolome-Wide' Study
Your metabolic 'fingerprint' can reveal much about the possible causes of major diseases, according to the study published in the journal Nature.
Monday, April 21, 2008
Scientific News
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Predicting Adverse Drug Reactions with Higher Confidence
A new integrated computational method helps predicting adverse drug reaction—which are often lethal—more reliably than with traditional computing methods.
A New Way to Starve Lung Cancer?
Metabolic alterations in lung cancer may open new avenues for treating the disease.
Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Building a Better Liposome
Computational models suggest new design for nanoparticles used in targeted drug delivery.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos