Corporate Banner
Satellite Banner
Metabolomics & Lipidomics
Scientific Community
Become a Member | Sign in
Home>Resources>Application Notes>This Application Note
  Application Notes
Scientific News
Gut Microbes Signal to the Brain When They're Full
Don't have room for dessert? The bacteria in your gut may be telling you something.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Drug May Prevent Life-Threatening Muscle Loss in Advanced Cancers
New data describes how an experimental drug can stop life-threatening muscle wasting (cachexia) associated with advanced cancers and restore muscle health.
Cancer-Fighting Tomato Component Traced
The metabolic pathway associated with lycopene, the bioactive red pigment found in tomatoes, has been traced by researchers at the University of Illinois.
Circadian Clock Controls Insulin and Blood Sugar in Pancreas
Map of thousands of genes suggests new therapeutic targets for diabetes.
Cellular Stress Process Identified in Cardiovascular Disease
Combining the investigative tools of genetics, transcriptomics, epigenetics and metabolomics, a Duke Medicine research team has identified a new molecular pathway involved in heart attacks and death from heart disease.
Predicting Adverse Drug Reactions with Higher Confidence
A new integrated computational method helps predicting adverse drug reaction—which are often lethal—more reliably than with traditional computing methods.
A New Way to Starve Lung Cancer?
Metabolic alterations in lung cancer may open new avenues for treating the disease.
Evidence of How Incurable Cancer Develops
Researchers in the West Midlands have made a breakthrough in explaining how an incurable type of blood cancer develops from an often symptomless prior blood disorder.
Building a Better Liposome
Computational models suggest new design for nanoparticles used in targeted drug delivery.
Scroll Up
Scroll Down

A global abstract analysis of selected histone-modifying enzymes using AKS
Bookmark and Share

Active Motif

With over 8.4 million PubMed abstracts and with 1000s of new abstracts added daily, it is physically impossible for any conscientious researcher to keep current with all of the newly published research. Most scientists rely on simple information-retrieval techniques to obtain scientific articles pertaining to a topic of interest. However, new sophisticated software programs have been developed to try to understand how biological concepts in scientific literature are used and how these concepts correspond to the query term provided by the user. When searching PubMed abstracts, most life science researchers do not want to be experts in text mining techniques, but simply want to have an all-encompassing understanding of the published information about a biomolecule and its relationship to disease or other biological entities. Therefore, global abstract analysis (GAA) is a novel approach for examining the complexity of information described in PubMed abstracts.

GAA was employed to illustrate how this technique can help uncover additional biological relationships, scientific information, and overall publication trends of a particular collection of biomolecules. In this study we selected twelve histone-modifying enzymes (1). They are important because several common post-translational modifications are driven by these types of histone-modifying enzymes. These resulting modifications influence the structure of chromatin and the dynamic interaction of transcriptional machinery. The modifications include: methylation, demethylation, acetylation, deacetylation, ubiquitination, sumoylation and phosphorylation. Methylation and acetylation are the typical control points between switching from gene silencing to active transcription, whereas hyperacetylated histone tails are associated with active transcription. In addition, ubiquitination is implicated in transcriptional regulation by polycomb silencing and regulation of chromatin structure, while phosphorylated residues on histone tails can be markers for chromatin condensation in mitosis, DNA repair, or apoptosis.

Distinct from traditional simple text search methods, the technique of GAA gives an extensive overview and historical synopsis of the published knowledge of these fascinating histone-modifying enzymes. In this report we describe the application of GAA to a group of disease-associated enzymes and demonstrate how a complete GAA can be developed for any targeted collection of biomolecules for pathway construction, biomarker discovery, or early investigative studies.

Further Information

Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos