Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Zooming in on Early Embryonic Development

Published: Monday, May 21, 2012
Last Updated: Monday, May 21, 2012
Bookmark and Share
Broad Institute researchers show a high-resolution view of mouse embryogenesis, down to individual bases, showing genetic changes.

If there were just one book of biology, it would be rewritten constantly with the sometimes dramatic, more often incremental advances in understanding that come with the nature of science. Constant revision can come with insight – think Darwin – or with technology – witness faster, cheaper sequencing machines – or with both.

New fields give rise to newer ones, such as the slew of -omics that sprang from genomics. Genetics, the study of the basic physical unit of inheritance, has led to epigenetics, the study of chemical compounds that modify the genome, telling it what to do, where to do it, and when to do it.

When Alexander Meissner teaches his epigenetics students about the earliest stages of mammalian development, he uses a textbook model of DNA methylation. Until now. This chapter of basic biology will have to be rewritten, based on research he and Broad colleagues report in Nature showing that methyl groups behave in a more complex pattern than previously understood.

Epigenetic modifications such as DNA methylation are important because these chemical tags enable genes to switch on or off. The classic model says DNA methylation levels in the paternal genome – from sperm – drop sharply just before cell division and the maternal genome – the egg – loses DNA methylation later, over subsequent cleavage divisions. But it’s not that simple.

A high-resolution view of mouse embryogenesis before the blastocyst stage – down to the single bases As, Cs, Ts, or Gs in the genetic code – revealed interesting dynamics and differences in DNA methylation between the paternal and maternal genomes that might have implications for how these genes are regulated during early embryonic development. These differentially methylated genes went beyond known imprinted genes, whose expression is determined by the parent from which they came.

“This paper gives you for the first time a base-resolution view of the complete pre-implantation stages, so you can see which parts of the genome, which genes and which regulatory elements change and to what degree,” says Alex, a senior associate member of the Broad, an assistant professor at Harvard University, and senior author of the paper. “Today's technologies are incredibly sensitive, so you can finally zoom in and view this dynamic phase at high resolution. At the Broad and around the world many groups are busy mapping DNA methylation in every possible cell type to gain insights to when and where methylation is used as a regulatory mark, how it changes in normal development and what are changes that occur in different diseases.”

In cancer, for example, it is known that gain and loss of DNA methylation at particular sites in the genome are involved in the disease. Identifying all of these sites might provide clues for disease prediction as well as insights into disease biology. But before making sense of aberrant changes in diseases, it is critical to understand DNA methylation better across all stages of development.

One map has already been redrawn: a genome-scale DNA methylation map in mouse embryogenesis.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Predicting Cancer’s Next Move
Research offers a new approach to studying drug resistance in cancer.
Monday, November 11, 2013
Global Alliance to Enable Secure Sharing of Genomic and Clinical Data
Over 70 leading organizations have taken the first steps to form an international alliance dedicated to enabling secure sharing of genomic and clinical data.
Monday, June 10, 2013
Surveying Cells, One At a Time
When studying any kind of population — people or cells — averaging is a useful, if flawed, form of measurement.
Wednesday, May 22, 2013
Unpacking a Complex Genetic Suitcase
Long before Homo sapiens lived in Africa, even before Neanderthals roamed part of the world, something interesting was happening on chromosome 17.
Thursday, July 12, 2012
Breast Cancer’s Many Drivers
Extensive sequencing effort looks at the genetic changes associated with various breast cancers.
Thursday, June 21, 2012
Mapping the Healthy Human Microbiome
Broad scientists create molecular tools and applying standardized protocols, generating vast amounts of data to identify the microbiome's most elusive organisms for whole genome sequencing.
Friday, June 15, 2012
Scientific News
Research at St Thomas’s Hospital Exploring Causative Factors of Atopic Eczema and Food Allergy in Infants
Carsten Flohr and his research group at St Thomas’s hospital, London are currently investigating the interaction between skin and gut microbiota in relation to the associated risk of atopic eczema (AE) and food allergy in infants.
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Proteins Crucial to Loss of Hearing Identified
Proteins play key role in genes that help auditory hair cells grow.
New Virus Identified In Blood Supply
Scientists have discovered a new virus that can be transmitted through the blood supply.
Far-reaching Genetic Study of 1,000 UK People
300,000 gene variants from 1,000 people made publically available via F1000Research.
DNA Alterations as Among Earliest to Occur in Lung Cancer Development
Genetic footprints of precancer detectable in some blood samples.
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Genetic Sleuthing
Sabeti team applies Ebola methods to shed light on spread of Lassa fever.
Seeking “Gold Standard” Wastewater Treatments
Metagenomic analyses lend insights into how microbes break down wastewater contaminants.
Using Genetic Sequencing to Manage Cancer in Children
A team of scientists have investigated the feasibility of incorporating clinical sequencing information into the care of young cancer patients.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos