Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Zooming in on Early Embryonic Development

Published: Monday, May 21, 2012
Last Updated: Monday, May 21, 2012
Bookmark and Share
Broad Institute researchers show a high-resolution view of mouse embryogenesis, down to individual bases, showing genetic changes.

If there were just one book of biology, it would be rewritten constantly with the sometimes dramatic, more often incremental advances in understanding that come with the nature of science. Constant revision can come with insight – think Darwin – or with technology – witness faster, cheaper sequencing machines – or with both.

New fields give rise to newer ones, such as the slew of -omics that sprang from genomics. Genetics, the study of the basic physical unit of inheritance, has led to epigenetics, the study of chemical compounds that modify the genome, telling it what to do, where to do it, and when to do it.

When Alexander Meissner teaches his epigenetics students about the earliest stages of mammalian development, he uses a textbook model of DNA methylation. Until now. This chapter of basic biology will have to be rewritten, based on research he and Broad colleagues report in Nature showing that methyl groups behave in a more complex pattern than previously understood.

Epigenetic modifications such as DNA methylation are important because these chemical tags enable genes to switch on or off. The classic model says DNA methylation levels in the paternal genome – from sperm – drop sharply just before cell division and the maternal genome – the egg – loses DNA methylation later, over subsequent cleavage divisions. But it’s not that simple.

A high-resolution view of mouse embryogenesis before the blastocyst stage – down to the single bases As, Cs, Ts, or Gs in the genetic code – revealed interesting dynamics and differences in DNA methylation between the paternal and maternal genomes that might have implications for how these genes are regulated during early embryonic development. These differentially methylated genes went beyond known imprinted genes, whose expression is determined by the parent from which they came.

“This paper gives you for the first time a base-resolution view of the complete pre-implantation stages, so you can see which parts of the genome, which genes and which regulatory elements change and to what degree,” says Alex, a senior associate member of the Broad, an assistant professor at Harvard University, and senior author of the paper. “Today's technologies are incredibly sensitive, so you can finally zoom in and view this dynamic phase at high resolution. At the Broad and around the world many groups are busy mapping DNA methylation in every possible cell type to gain insights to when and where methylation is used as a regulatory mark, how it changes in normal development and what are changes that occur in different diseases.”

In cancer, for example, it is known that gain and loss of DNA methylation at particular sites in the genome are involved in the disease. Identifying all of these sites might provide clues for disease prediction as well as insights into disease biology. But before making sense of aberrant changes in diseases, it is critical to understand DNA methylation better across all stages of development.

One map has already been redrawn: a genome-scale DNA methylation map in mouse embryogenesis.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Single-cell Analysis Hits its Stride
Advances in technology and computational analysis enable scale and affordability, paving the way for translational studies.
Saturday, May 23, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Predicting Cancer’s Next Move
Research offers a new approach to studying drug resistance in cancer.
Monday, November 11, 2013
Global Alliance to Enable Secure Sharing of Genomic and Clinical Data
Over 70 leading organizations have taken the first steps to form an international alliance dedicated to enabling secure sharing of genomic and clinical data.
Monday, June 10, 2013
Surveying Cells, One At a Time
When studying any kind of population — people or cells — averaging is a useful, if flawed, form of measurement.
Wednesday, May 22, 2013
Unpacking a Complex Genetic Suitcase
Long before Homo sapiens lived in Africa, even before Neanderthals roamed part of the world, something interesting was happening on chromosome 17.
Thursday, July 12, 2012
Breast Cancer’s Many Drivers
Extensive sequencing effort looks at the genetic changes associated with various breast cancers.
Thursday, June 21, 2012
Mapping the Healthy Human Microbiome
Broad scientists create molecular tools and applying standardized protocols, generating vast amounts of data to identify the microbiome's most elusive organisms for whole genome sequencing.
Friday, June 15, 2012
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Ancient Origins of Deadly Lassa Virus Uncovered
Working as part of an international team in North America and West Africa, a researcher at The Scripps Research Institute (TSRI) has published new findings showing the ancient roots of the deadly Lassa virus, a relative of Ebola virus, and how Lassa virus has changed over time.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Statistical Technique Helps Researchers Understand Tumor Makeup, Personalize Cancer Treatments
A new statistical method for analyzing next-generation sequencing (NGS) data that helps researchers study the genome of various organisms such as human tumors and could help bring about personalized cancer treatments has been unveiled.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!