Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tracking MRSA in Real Time

Published: Friday, June 15, 2012
Last Updated: Friday, June 15, 2012
Bookmark and Share
Study highlights benefits of rapid whole-genome sequencing.

In a new study released in New England Journal of Medicine, researchers demonstrate that whole genome sequencing can provide clinically relevant data on bacterial transmission within a timescale that can influence infection control and patient management.

Scientists from the Wellcome Trust Sanger Institute, University of Cambridge, and Illumina collaborated to use whole genome sequencing to identify which isolates of methicillin-resistant Staphylococcus aureus (MRSA) were part of a hospital outbreak.

Current laboratory techniques often cannot distinguish between MRSA isolates. This study indicates that whole genome sequencing can provide precise information in a fast turnaround time, and could make a clear distinction between MRSA isolates in a way that was not previously possible.

MRSA infection is a major public health problem. For example, in the United States, an estimated 89,785 invasive MRSA infections associated with 15,249 deaths occurred in 2008.

Even when the disease is treated, MRSA infections double the average length of hospital stay and increase healthcare costs. Fast and accurate detection of bacterial transmission is crucial to better control of healthcare-associated infection.

"An important limitation of current infection control methodology is that the available bacterial typing methods cannot distinguish between different strains of MRSA," explains Professor Sharon Peacock, lead author from the University of Cambridge and clinical specialist at the Health Protection Agency.

Professor Peacock continued, "The purpose of our study was to see if whole genome sequencing of MRSA could be used to distinguish between related strains at a genome level, and if this would inform and guide outbreak investigations."

The team focused on an outbreak in a neonatal intensive care unit that had already ended. They took the samples and sequenced them as if they had been working in real time.

They found they could distinguish between strains that were part of the outbreak and strains that were not, and showed that they could have identified the outbreak earlier than current clinical testing, potentially shortening the outbreak.

"This study demonstrates how advances in whole genome sequencing can provide essential information to help combat hospital outbreaks in clinically relevant turnaround times," says Dr Geoffrey Smith, co-lead author and Senior Director of Research at Illumina.

Dr Smith continued, "As sequencing has become increasingly accurate and comprehensive, it can be used to answer a wide range of questions. Not only could we distinguish different MRSA strains in the hospital, we were also able to rapidly characterize antibiotic resistance and toxin genes present in the clinical isolates."

The team constructed a list of all the MRSA genes that cause antibiotic resistance. Rapidly identifying drug resistance in MRSA strains will guide healthcare professionals to give each infected patient the most appropriate treatment possible. This also provides a powerful tool for the discovery of new drug resistance mechanisms.

MRSA produces numerous unique toxins that can inflict severe clinical syndromes, including septic shock, pneumonia, and complicated skin and soft tissue infections.

The team created a list of toxin genes to rapidly identify those present in the MRSA strains, which currently can only be identified with multiple assays in reference laboratories.

"Distinguishing between strains is important for infection control management," says Dr Julian Parkhill, lead author from the Wellcome Trust Sanger Institute. "Quick action is essential to control a suspected outbreak, but it is of equal importance to identify unrelated strains to prevent unnecessary ward closures and other disruptive control measures. Healthcare needs better, more efficient ways of identifying an outbreak and then processing the data."

"Current clinical methods to make links between related strains compare the pattern of bacterial susceptibility to a profile of antibiotics. We found this method to be inaccurate. We showed that two MRSA strains, which seemed by current methods to be identical, were genetically very different."

The use of whole genome sequencing will ultimately become part of routine health care. This study indicates that whole genome sequencing in real time will be valuable in controlling MRSA and other outbreaks in a hospital setting.

"The next stage is to develop interactive tools that provide automated interpretation of genome sequence and provide clinically meaningful information to healthcare workers, a necessary advance before this can be rolled out into clinical practice," adds Professor Peacock.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Normal Skin Accrues High Number of Mutations Associated with Cancer
Researchers used genomic sequencing to gain insights into how somatic mutations build up in normal cells before the onset of cancer, a process that is poorly understood.
Friday, May 22, 2015
Genes that Cause Pancreatic Cancer Identified by New Tool
Screening system in mice spots cancerous changes invisible to sequencing.
Thursday, December 11, 2014
Large-scale Study Raises Hopes For Development Of E. coli Vaccine
Global comparison reveals surprisingly close relation between E. coli strains that cause traveller's diarrhoea.
Wednesday, November 12, 2014
Punctuated Evolution in Cancer Genomes
Remarkable new research overthrows the conventional view that cancer always develops in a steady, stepwise progression. It shows that in some cancers, the genome can be shattered into hundreds of fragments in a single cellular catastrophe, wreaking mutation on a massive scale.
Tuesday, January 11, 2011
Scientific News
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
New Research Advances Genetic Studies in Wildlife Conservation
‘Next-gen’ DNA sequencing of non-invasively collected hair expands field of conservation genetics.
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
OGT’s Popular ESHG Workshop Free to View Online
Learn about the next generation of microarrays in one of the best attended workshops of the conference.
Discordant NIPT Test Results May Reflect Presence of Maternal Cancer
Results published in Journal of the American Medical Association.
Sperm RNA Test May Improve Evaluation of Male Infertility
To help resolve uncertainty—and guide prospective parents to the right fertility treatments—scientists propose the use of a new kind of fertility test. It involves examining sperm RNA by means of next-generation sequencing.
How the Mammoth Got its Wool
Evolutionary change in a gene reconstructed in the lab from the woolly mammoth was part of a suite of adaptations that allowed the mammoth to survive in harsh arctic environments, according to new research.
NuGEN Scientists Screen 400+ Genes for Fusion Events in Single Assay
Breakthrough proves efficacy of new sample preparation method that could accelerate cancer research and development of treatments and diagnostic tests.
More Accurate and Comprehensive Whole Genome Assembly
Scientists from the Icahn School of Medicine at Mount Sinai have developed a new approach to build nearly complete genomes by combining high-throughput DNA sequencing with genome mapping.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!