Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
Become a Member | Sign in
Home>News>This Article

New NIH/NHGRI Grants to Harness Nanoscale Technologies to Cut DNA Sequencing Costs

Published: Monday, September 17, 2012
Last Updated: Monday, September 17, 2012
Bookmark and Share
Grants of almost $19 million will help to develop technologies to dramatically reduce the cost of DNA sequencing.

During the past decade, DNA sequencing costs have fallen dramatically (see, fueled by tools, technologies and process improvements developed by genomics researchers. In 2004, NHGRI launched the Advanced DNA Sequencing Technology Program to accelerate improvements in DNA sequencing technologies. By 2009, the program had surpassed its initial goal of producing high-quality genome sequences of roughly 6 billion base pairs — the amount of DNA found in humans and other mammals that receive roughly 3 billion base pairs from each of their parents — for $100,000 each. Today, the cost of sequencing a human genome using these next-generation DNA sequencing technologies has dipped to just under $8,000.

Price is one hurdle in the way of widespread use of genomics in research and clinical care. Speed and accuracy are among other factors. The grants will attempt to address all of these challenges.

"We can now access data we could not dream of getting in 2004 when we started this program — tens of thousands of human genome sequences have been generated," said Eric D. Green, M.D., Ph.D., NHGRI director. "And yet, the information we would truly like to get for understanding disease and, eventually, for treating patients, requires much better quality sequence data. That is the direction we would like to go with these grants."

The use of nanoscale devices for sequencing, reflected in many of these projects, is accelerating. To say that nanoscale devices function on a very small scale is an understatement. A human hair is 100,000 nanometers in diameter and a single strand of DNA is 2 nanometers in diameter.
"Several of the investigative teams will explore novel nanoscale sensing modes and approaches for manipulating DNA molecules with great precision by using nanoscale structures," noted Jeffery A. Schloss, program director for NHGRI’s Advanced DNA Sequencing Technology Program.

The 2012 awards are:

Genapsys, Inc., Redwood City, CA.
Hesaam Esfandyarpour, Ph.D.
Funding amount: $1.2 million in fiscal 2012 (total $3.3 million over three years subject to the availability of appropriations)
Aim: Develop easy-to-use, chip-based DNA sequencing that combines multiple sample processing steps with sequencing in a single device called the Gene Electronic Nano-Integrated Ultra-Sensitive platform.

Harvard University, Cambridge, Mass.
Jene Golovchenko, Ph.D., and Daniel Branton, Ph.D.
Funding amount: $1.2 million in fiscal 2012 (total $3.6 million over three years subject to the availability of appropriations)
Aim: Develop a scalable graphene nanopore sequencing device that will identify DNA subunits on unlabeled, single-stranded genomic DNA molecules. Graphene is a special arrangement of a single layer of carbon atoms. The nanopore is a hole in the graphene about two nanometers in diameter.

GnuBIO, Inc., Cambridge, Mass.
Tal Raz, Ph.D., with David Weitz, Ph.D., Harvard University
Funding amount: $1.5 million fiscal 2012 (total $4.5 million over three years subject to the availability of appropriations)
Aim: Increase the throughput of the current single channel microfluidic instrument to enable whole genome sequencing in about six hours, including data analysis, genome alignment and variant calling. Microfluidics refers to plastic devices in which fluids move through tiny channels that are the diameter of a human hair.

Columbia University, New York City
Kenneth Shepard, Ph.D., with Marija Drndic, Ph.D., University of Pennsylvania, Philadelphia
Funding amount: $500,000 in FY2012 (total $1.5 million over three years subject to the availability of appropriations)
Aim: Develop much faster and more sensitive electronics to enable sequencing based on arrays of nanopores.

Intel Corp., Santa Clara, Calif., University of Twente, Enschede-Noord, Netherlands, Columbia University, Pacific Biosciences, Menlo Park, CA
Madoo Varma, Ph.D., Oguz H. Elibol, Ph.D., Xing Su, Ph.D., Serge Guy Lemay, Ph.D., Kenneth Shepard, Ph.D., Stephen Turner, Ph.D.
Funding amount: $1.2 million fiscal 2012 (total $5 million over four years subject to the availability of appropriations)
Aim: Develop a real-time, single-molecule sequencer that detects electrically active tags that will be attached to each of the four DNA subunits

Northeastern University, Boston, Pacific Biosciences
Meni Wanunu, Ph.D., and Jonas Korlach, Ph.D.
Funding amount: $300,000 fiscal 2012 (total $825,000 over 3 years subject to the availability of appropriations)
Aim: Reduce the cost of Pacific Biosciences' single-molecule real-time (SMRT) DNA sequencing by reducing the amount of DNA needed to picogram levels. A picogram is 1 trillionth of a gram.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Using Genetic Sequencing to Manage Cancer in Children
A team of scientists have investigated the feasibility of incorporating clinical sequencing information into the care of young cancer patients.
Tuesday, September 15, 2015
Genetic Link For Rare Intestinal Cancer
Researchers recommend screening for people with family history.
Thursday, April 16, 2015
Tumor DNA in Blood Reveals Lymphoma Progression
Using an advanced genetic test, researchers were able to detect diffuse large B-cell lymphoma (DLBCL) in blood serum before it could be seen on CT scans.
Tuesday, April 14, 2015
Comprehensive Genomic Study of Sub-Saharan Africans Conducted
New data resource will enhance disease research and genomic diversity studies.
Thursday, December 04, 2014
NIH Exceptional Responders to Cancer Therapy Study Launched
Study to investigate the molecular factors of tumors associated with exceptional treatment responses of cancer patients to drug therapies.
Friday, September 26, 2014
NIH Awards $14.5M for DNA Sequencing Techniques
For the past several years, nanopore research has been an important focus of the program’s grants.
Tuesday, August 05, 2014
NIH Funds $24M into Alzheimer’s Disease Genome Research
Scientists will analyze genome sequence data to identify gene risk, protective factors.
Tuesday, July 08, 2014
Genetic Disorder Causing Strokes, Vascular Inflammation in Children Discovered
NIH researchers have identified gene variants that cause a rare syndrome of sporadic fevers, skin rashes and recurring strokes, beginning early in childhood.
Thursday, February 20, 2014
Speeding Validation of Disease Targets
NIH, industry and non-profits join forces to develop new treatments earlier, beginning with Alzheimer’s, type 2 diabetes, and autoimmune disorders.
Tuesday, February 04, 2014
NCI Launches Trial to Assess the Utility of Genetic Sequencing to Improve Patient Outcomes
Trial could identify patient sub-groups that are likely to benefit from certain treatments.
Saturday, February 01, 2014
NIH Deposits First Batch of Genomic Data for Alzheimer’s Disease
Researchers can now freely access the first batch of genome sequence data from the Alzheimer’s Disease Sequencing Project (ADSP).
Monday, December 02, 2013
NIH Awards Focus on Nanopore Technology For DNA Sequencing
The use of nanopore technology aimed at more accurate and efficient DNA sequencing is the main focus of grants awarded by the NIH.
Monday, September 09, 2013
New Genes for Childhood Epilepsies Discovered
New strategy may find more genes and provide a better understanding of these and other complex neurological disorders.
Monday, August 12, 2013
NIH, Lacks Family Reach Understanding to Share Genomic Data of HeLa Cells
New NIH policy requires researchers to apply for access to the full genome sequence data from HeLa cells.
Thursday, August 08, 2013
NIH Funds New Grants Exploring Use of Genome Sequencing in Patient Care
NIH has awarded four grants for up to four years to multidisciplinary research teams to explore the use of genome sequencing in medical care.
Wednesday, July 24, 2013
Scientific News
Research at St Thomas’s Hospital Exploring Causative Factors of Atopic Eczema and Food Allergy in Infants
Carsten Flohr and his research group at St Thomas’s hospital, London are currently investigating the interaction between skin and gut microbiota in relation to the associated risk of atopic eczema (AE) and food allergy in infants.
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Proteins Crucial to Loss of Hearing Identified
Proteins play key role in genes that help auditory hair cells grow.
New Virus Identified In Blood Supply
Scientists have discovered a new virus that can be transmitted through the blood supply.
Far-reaching Genetic Study of 1,000 UK People
300,000 gene variants from 1,000 people made publically available via F1000Research.
DNA Alterations as Among Earliest to Occur in Lung Cancer Development
Genetic footprints of precancer detectable in some blood samples.
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Genetic Sleuthing
Sabeti team applies Ebola methods to shed light on spread of Lassa fever.
Seeking “Gold Standard” Wastewater Treatments
Metagenomic analyses lend insights into how microbes break down wastewater contaminants.
Using Genetic Sequencing to Manage Cancer in Children
A team of scientists have investigated the feasibility of incorporating clinical sequencing information into the care of young cancer patients.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos