Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Five Clinical Areas Most Likely to Benefit from DNA Sequencing

Published: Monday, November 26, 2012
Last Updated: Monday, November 26, 2012
Bookmark and Share
The idea of a patient's DNA being routinely tested by a next-generation sequencer to help a doctor make a diagnosis may seem a bit futuristic right now.

But Kalorama Information suggests that sequencers are expected to see usage in at least five clinical areas over the next several years. At the same time, the healthcare market research publisher warns that there are unpredictable variables which will affect the timing for each clinical application, including science, regulation and economics, not to mention the strengths and weaknesses of different DNA sequencing technologies. Kalorama recently released a white paper titled, "Next-Generation Sequencing Moves into Clinical Applications," covering some of these perspectives, following the third edition of its full market research report on this industry, DNA Sequencing Equipment and Services Markets.

"There are several clinical areas where next-generation sequencers are likely to see rapid growth, causing the overall segment to become a large fraction of the sequencer market within five years," said Justin Saeks, Kalorama analyst and author of the report.

According to Kalorama Information, these areas include:

•    cancer diagnostics and treatment
•    HLA/ MHC typing
•    neonatal and prenatal testing
•    pathogen detection
•    pharmacogenetics

Kalorama notes these areas are progressing gradually, due to the regulatory process, the complexity of the science, and the medical community's cautious approach with new tests. Eventually, the technology is expected to gain significant momentum in healthcare, possibly more rapidly in Europe's easier regulatory environment, as the complex issues are addressed and the individual systems become proven in their applications.

Kalorama suggests that different areas can have different requirements in terms of read length, accuracy, coverage, throughput, run time, sample size and other features, which may result in niches. For example, cancer applications might have specific needs for higher accuracy/coverage, longer read length, and/or single cell capability due to the large variety of cancers, the large genetic aberrations, and the heterogeneity of the tissue often involved. Over time, medical discoveries, along with technological advances in hardware, software, and reagents, will continue to change this landscape.

"The continuing drop in DNA sequencer and consumables costs, along with increases in performance, are the primary drivers of adoption into new applications," Saeks said. "But the exponential drop in the cost of sequencing may slow revenue growth in the near term, as the complex factors affecting adoption will likely take some time to shake out."

A range of new challenges and questions are also likely to manifest in unforeseen ways, for example, relating to ethical, legal, and social aspects. Along with the scientific challenges, these may take ten years or more to address before a tipping point is reached. But in the long term, sequencers are eventually expected to become ubiquitous in healthcare, with patients having the DNA in their circulating blood tested regularly. In the meantime, instrument suppliers, diagnostics companies, and clinical labs will need to consider how the various trends will impact these applications in the rapidly changing market.

Kalorama Information's report, DNA Sequencing Equipment and Services Markets, 3rd Edition, contains a deeper discussion of some of these trends, a review of products currently on the market, and competitive positions of players. In addition to analyzing DNA sequencer sales and making forecasts for future sales, it also looks at sequencer consumables and services sales.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
NASA's DNA Sequencing in Space is a Success
DNA has been sequenced in space for the first time ever for the Biomolecule Sequencer investigation, using the MinION sequencing device.
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Bringing NGS to the Crime Lab
New technology being validated in BCI lab for use in Ohio missing persons cases.
Expanding Knowledge of Viral Diversity
Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses.
How Cloud Connectivity Can Combat the Reproducibility Crisis
This infographic explains the reproducibility crisis, and how cloud connectivity can help overcome this problem.
The Power of Model Systems
New insights into the influence of host on the gut microbiome are revealed with in situ light sheet fluorescence microscopy and stochastic mathematical modelling.
New Way To Measure Important Chemical Modification On RNA
Technology could advance stem cells’ use in regenerative medicine, UCLA researchers say.
Mapping Antibody Creation in Humans
Researchers have created the first, detailed map of the body's antibody production, which could suggest new treatment options for immune disorders.
Decoding the Genome of the Olive Tree
A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree. This work will facilitate genetic improvement for production of olives and olive oil, two key products in the Spanish economy and diet.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!