Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Network Being Built to Support Transfer of Big Data

Published: Thursday, March 21, 2013
Last Updated: Thursday, March 21, 2013
Bookmark and Share
The University of California, San Diego, is taking another leap forward in the name of enabling data-intensive science.

The Prism@UCSD project is building a research-defined, end-to-end cyberinfrastructure on the La Jolla campus capable of supporting bursts of data between facilities that might otherwise cripple the main campus network.

"High-performance cyberinfrastructure is a strategic necessity for a research university," said UC San Diego Chancellor Pradeep K. Khosla. "The Prism network will enable rapid movement of ‘Big Data’ for multiple, diverse disciplines across campus, including science, engineering, medicine and the arts."

With $500,000 in funding from the National Science Foundation (NSF), researchers in the UCSD division of the California Institute for Telecommunications and Information Technology (Calit2) are building the network to support researchers in half a dozen data-intensive scientific areas, including genomic sequencing, climate science, electron microscopy, oceanography and physics.

“We’ve identified a variety of big data users on this campus who need ten gigabit/s and faster bandwidth to deal with the avalanche of data coming from scientific instruments such as sequencers, microscopes and computing clusters,” said Philip Papadopoulos, principal investigator on the Prism@UCSD project, who splits his time between Calit2 and the university’s San Diego Supercomputer Center (SDSC). “We're starting at 1 Terabit/s of connected capacity through our next-generation modular switch, which is at the center of the Prism network. It can carry 20 times the traffic of our current research network, and it’s 100 times the bandwidth of the main campus network.”

With the addition of Prism to Calit2’s research network infrastructure, the aggregate bandwidth in the Calit2 network will now top one terabit per second – one trillion bits per second.
“You can think of Prism as the HOV lane,” added Papadopoulos, “whereas our very capable campus network represents the slower lanes on the freeway.”

“Prism@UCSD is a response to the growing challenge of Big Data,” said Calit2 Director Larry Smarr. “The key innovation in Prism@UCSD is to provide end-to-end dedicated large bandwidth to the end-users on campus.”

In the past decade, Smarr and Papadopoulos have collaborated on multiple NSF-funded projects to enable cheaper, faster and more energy-efficient scientific computing, storage and visualization. Their OptIPuter project developed a new computer networking paradigm, with optical networks – not computer processors – at the core. That led to Quartzite, an experimental network with reconfigurable optical fiber paths, and wavelength selective switching. The Quartzite core is now six years old, is at full capacity, consumes significant energy, and does not support software-defined networking (SDN) tools such as OpenFlow. Based on those realities and lessons learned in previous projects, Papadopoulos and Smarr were able to create a successful proposal to the National Science Foundation for a more robust, lower energy, faster, and easier to replicate design.

Prism builds on top of Quartzite, using a next-generation Arista Networks 7405 switch-router, which boasts triple the energy efficiency and four times the capacity of Quartzite’s switch. Prism will also expand the existing Calit2-SDSC optical-fiber connection.

“By the time Prism is built out, we will have expanded the SDSC-Calit2 link from 50 to 120Gbps, and it won’t cost very much to get it to 160Gbps,” said Papadopoulos. “Other campus labs then connect directly to the Prism core at Calit2 with dedicated links of between 20 and 80 Gigabit/s each. The structure allows a Prism-connected lab to saturate any of our external links, no matter where they land on campus. It also enables these labs to share data with each other or utilize high-end resources at SDSC. There is more than enough bandwidth in the switch to accommodate anything you can throw at it.” The Arista switch has full bisection bandwidth (as between clusters in a machine room) but it can be deployed at campus scale.

"Prism is the answer to how to move massive volumes of instrument data generated on and off campus to SDSC's powerful Big Data computing and storage resources, Gordon and Data Oasis,” said SDSC Director Michael Norman. “Prism will unleash the scientific potential energy of a number of frontier science projects that have been bandwidth limited."

The network will be a hybrid – part “production” infrastructure for real-world use, part “experimental” system for researchers to test out networking ideas. On the production side, the campus is counting on Prism to reduce congestion on the main UCSD network by moving traffic from a few hundred researchers in the most data-intensive fields onto Prism, where they can work with huge data sets that might otherwise clog the campus infrastructure – a state of-the-art infrastructure that has to serve over 30,000 people.

“The Prism Big Data network also creates a high-capacity ‘data freeway’ to campus, national or international networks,” added Smarr.

Case in point: UCSD physics professor Frank Wuerthwein’s lab is the only Open Science Grid (OSG) node on the UCSD campus, and the lab’s cluster hosts massive amounts of data from the Large Hadron Collider.

“We want to expand the presence of OSG on this campus,” said Wuerthwein, who has signed up to use Prism@UCSD. “For the really big data we are holding – petabytes of Large Hadron Collider data, for instance – it is nice to have a network where we can transmit terabytes of data without killing the campus network in the process.”

“The most data-intensive scientific applications get the most value out of using dedicated ‘fat’ pipes with the ability to accommodate short, extreme-sized bursts of data,” said Papadopoulos. “We believe Prism will be the forerunner of specialized, Big Data cyberinfrastructures on many research campuses – and beyond.”

Prism will also add a trunk line to the Computer Science and Engineering building, to serve users such as the Center for Networked Systems (CNS). CNS research scientist George Porter and his students use the SEED cluster for Big Data analysis. “One graduate student might work on a 100TB to 200TB data set, and there is only room for one of those at a time on that cluster,” said Porter. “So if you wanted to swap data sets, you’d kill the campus network, or you would have to stretch it out over the course of days.”

Another major campus user of Prism will be the National Center for Microscopy and Imaging Research (NCMIR), led by professor Mark Ellisman. “We run our own facilities that house petabytes of data distributed across three sites on campus,” said Ellisman. “So being able to move around the data to wherever it is needed is extremely important. We intend to use Prism for our machine room-to-machine room backplane for day-to-day operations.”

Added Ellisman: “We will also be able to use it to burst out very large data sets that are generated on NCMIR's array of microscopes and then analyze the data on various Big Data infrastructures that reside physically in different locations on the UCSD campus.”

“NCMIR was one of the pioneering science projects that drove the OptIPuter project almost a decade ago,” noted Papadopoulos. “It’s important for us that a research center with deep knowledge and experience in this arena can really push the envelope and test the limits of how well the Prism network stands up to the needs of the biggest users. Over time, we expect other research groups to follow NCMIR’s lead as they begin to handle massive-scale data sets.”

According to Papadopoulos, the first constraint in sharing large-scale data at UCSD today is that the many labs that have built up terabytes, cannot easily move the data at will. “This is a first, essential step in a larger data capability that will touch all corners of UCSD and be fundamentally imagined and made real by a very large group of researchers,” he noted.

According to Calit2’s Smarr, if Prism is a success at UCSD, the project will explore ways to give nearby research labs access to the network – even if they aren’t on campus. “UC San Diego has a symbiotic relationship with nearby biotech firms and research institutions on the Torrey Pines Mesa, institutions such as Salk, The Scripps Research Institute, the Sanford Stem Cell Consortium, and Sanford-Burnham,” said Smarr. “We are entering the era of integrated, personalized ‘omics,’ and for San Diego to be a leader, we need to share biomedical data across the Mesa, regardless of which lab generates it.”

Most of the NSF funds will be spent on hardware, but Prism will also offer part-time jobs to undergraduate students who help operate the network, while learning about software-defined networking technology. According to Papadopoulos, applicants will have to be “self-starters with a technical bent,” preferably with a background in computer science or networking. In addition, a summer workshop aimed at minority-serving institutions will build on Calit2 and SDSC's tradition of diversity outreach.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
Scientists Pinpoint Cell Type and Brain Region Affected by Gene Mutations in Autism
UCSF-led study zeroes in on when and where disrupted genes exert effects.
Tuesday, November 26, 2013
DNA Found Outside Genes Plays Largely Unknown, Potentially Vital Roles
UCSF study identifies thousands of previously unknown RNA molecules.
Monday, July 01, 2013
Genetic Study Shows Europeans are One Big Family
Europeans are basically one big family, closely related to one another for the past thousand years, according to a new study of the DNA of people from across the continent.
Wednesday, May 08, 2013
Tick-Borne Lone Star Virus Identified through New Super-Fast Gene Sequencing
The tick-borne Lone Star virus has been conclusively identified as part of a family of other tick-borne viruses called bunyaviruses, which often cause fever, respiratory problems and bleeding.
Tuesday, May 07, 2013
New Center for Data Storage Research Established
Researchers in the Baskin School of Engineering at UC Santa Cruz are partnering with data storage industry to establish the Center for Research in Storage Systems (CRSS).
Thursday, March 28, 2013
National Study to Examine Risks, Benefits in Emergent Whole Genome Sequencing
UCSF School of Pharmacy faculty member to lead four-year, $2.4 million project.
Tuesday, March 19, 2013
'Defective' Virus Plays Major Role in Spread of Disease
Defective viruses now appear able to play an important role in the spread of disease, new research by UCLA life scientists indicates.
Friday, March 01, 2013
Methylome Modifications Offer New Measure of our “Biological” Age
Women live longer than men. Individuals can appear or feel years younger – or older – than their chronological age. Diseases can affect our aging process. When it comes to biology, our clocks clearly tick differently.
Monday, November 26, 2012
Gladstone Scientists Map Genomic Blueprint of the Heart
Findings could help scientists combat the underlying causes of congenital heart disease.
Friday, September 14, 2012
Beyond Base-pairs: Mapping the Functional Genome
Unprecedented study maps significant portion of the functional sequences of the mouse genome.
Wednesday, July 04, 2012
Gene Mutations Likely Cause of Massive Brain Asymmetry
It is hoped that these genetic changes can be inhibited by designer drugs, thus avoiding drastic surgery.
Tuesday, June 26, 2012
Scientific News
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
New Research Advances Genetic Studies in Wildlife Conservation
‘Next-gen’ DNA sequencing of non-invasively collected hair expands field of conservation genetics.
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
OGT’s Popular ESHG Workshop Free to View Online
Learn about the next generation of microarrays in one of the best attended workshops of the conference.
Discordant NIPT Test Results May Reflect Presence of Maternal Cancer
Results published in Journal of the American Medical Association.
Sperm RNA Test May Improve Evaluation of Male Infertility
To help resolve uncertainty—and guide prospective parents to the right fertility treatments—scientists propose the use of a new kind of fertility test. It involves examining sperm RNA by means of next-generation sequencing.
How the Mammoth Got its Wool
Evolutionary change in a gene reconstructed in the lab from the woolly mammoth was part of a suite of adaptations that allowed the mammoth to survive in harsh arctic environments, according to new research.
NuGEN Scientists Screen 400+ Genes for Fusion Events in Single Assay
Breakthrough proves efficacy of new sample preparation method that could accelerate cancer research and development of treatments and diagnostic tests.
More Accurate and Comprehensive Whole Genome Assembly
Scientists from the Icahn School of Medicine at Mount Sinai have developed a new approach to build nearly complete genomes by combining high-throughput DNA sequencing with genome mapping.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!