Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Population Genetics Unveils its Reflex™ Method

Published: Friday, April 19, 2013
Last Updated: Friday, April 19, 2013
Bookmark and Share
Novel Reflex technology for simultaneously sequencing long contiguous DNA regions in thousands of samples.

Researchers at Population Genetics Technologies Ltd (Cambridge, UK) have developed and validated an innovative technology - Reflex™ - for efficient targeted sequencing of long DNA regions in large numbers of genomic DNA samples.

Targeted sequencing is used to study specific parts of a genome that may be involved in disease or other relevant clinical traits.

Unveiling the role of these genomic regions usually requires interrogating long contiguous DNA sequences, such as a gene or genes, and doing so in many hundreds or thousands of people.

Samples from these individuals can be pooled to take advantage of the high capacity of current sequencing platforms, but current targeting approaches require processing of each sample separately to generate the multiplicity of small fragments required for next generation sequencing.

Reflex™ starts with pools of large genomic regions from hundreds or thousands of samples, performing fragmentation on the pool yet retaining the initial sample identity, thus greatly increasing the efficiency and decreasing the cost of targeted sequencing of contiguous genomic regions in large sample numbers.

This Reflex™ technology uses an intramolecular reaction to derive the shorter, sequencer-ready, daughter products from a pooled population of barcoded long-range PCR products while preserving the cognate DNA barcodes (Nucleic Acids Research, 2013, doi:10.1093/nar/gkt228).

This allows the large targeted region from many thousands of samples to be processed simultaneously in a pool, while allowing the derived sequences to be matched back to each individual.

The size of the targeted region depends on the desired design of the long-range PCR, but typically will span 7-10 kilobases.

The Reflex workflow enables uniform sequence coverage of long contiguous sequence targets in large numbers of samples at low cost on desktop next-generation sequencers.

The method requires small amounts of input genomic DNA and can be used to target members of multi-gene families with high specificity.

The technique is platform-agnostic, having been used successfully on Roche 454, Ion Torrent and Illumina platforms.

Current next-generation sequencing (NGS) platforms require that adaptors are added to the ends of short target DNA fragments to be sequenced.

Adding a multiplex identifier (MID), a short DNA barcode that identifies the sample, with the sequencing adaptor allows multiple DNA samples to be processed in a single sequencing run.

Typically, individual samples are prepared and then pooled at the sequencing step, requiring expensive and labor-intensive preparation methods: thus, for targeted re-sequencing, sample preparation costs dominate the overall cost.

Population Genetics CEO, Alan Schafer said that this issue motivated Population Genetics founder, Nobel Laureate Sydney Brenner, to invent a technique that can perform sample preparation on a pooled population of long ‘parent’ DNA fragments which are already appended with adaptors and MIDs, to generate smaller, sequencer-ready, ‘daughter’ amplicons that preserve the adaptors and MIDs.

“Many laboratories are interrogating the same genomic regions in many hundreds, if not thousands, of samples and can benefit from the sample-scale efficiencies of Reflex”. “When coupled with sequencers that allow an extra indexing run, the method can be used to simultaneously sequence thousands of samples in a single run”, he said.

The company has already used the Reflex workflow in this way to extract and sequence a gene target from 3000 human genomic DNA samples as part of an on-going disease susceptibility collaboration.

Reflex technology also has the potential to generate long reads within and beyond each starting long range PCR product by propagating molecular identifiers across a contiguous region (in development at Population Genetics).

The resulting data can inform haplotyping, genome phasing and RNA isoform identification using short-read NGS platforms, extending its value in providing coverage of clinically important genes and genomes.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Population Genetics Launches Populus Award 2012
Award offers financial and expert practical support for the completion of a multi-sample gene sequencing project using Population Genetics’ proprietary technologies.
Tuesday, October 16, 2012
Population Genetics Launches Funding Award for Novel Population Sequencing Studies
The Populus Award 2012 offers financial and expert practical support for the completion of a multi-sample gene sequencing project.
Monday, October 15, 2012
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
New Research Advances Genetic Studies in Wildlife Conservation
‘Next-gen’ DNA sequencing of non-invasively collected hair expands field of conservation genetics.
Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
OGT’s Popular ESHG Workshop Free to View Online
Learn about the next generation of microarrays in one of the best attended workshops of the conference.
Discordant NIPT Test Results May Reflect Presence of Maternal Cancer
Results published in Journal of the American Medical Association.
Sperm RNA Test May Improve Evaluation of Male Infertility
To help resolve uncertainty—and guide prospective parents to the right fertility treatments—scientists propose the use of a new kind of fertility test. It involves examining sperm RNA by means of next-generation sequencing.
How the Mammoth Got its Wool
Evolutionary change in a gene reconstructed in the lab from the woolly mammoth was part of a suite of adaptations that allowed the mammoth to survive in harsh arctic environments, according to new research.
NuGEN Scientists Screen 400+ Genes for Fusion Events in Single Assay
Breakthrough proves efficacy of new sample preparation method that could accelerate cancer research and development of treatments and diagnostic tests.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!