Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Use Genome Sequencing to Prove Herbal Remedy Causes Upper Urinary Tract Cancers

Published: Monday, August 12, 2013
Last Updated: Monday, August 12, 2013
Bookmark and Share
DNA mutation "signature" identified in cancers linked to birthwort herb.

Genomic sequencing experts at Johns Hopkins partnered with pharmacologists at Stony Brook University to reveal a striking mutational signature of upper urinary tract cancers caused by aristolochic acid, a plant compound contained in herbal remedies used for thousands of years to treat a variety of ailments such as arthritis, gout and inflammation. Their discovery is described in the Aug. 7 issue of Science Translational Medicine.

Aristolochic [pronounced a-ris-to-lo-kik] acid is found in the plant family "Aristolochia," a vine known widely as birthwort, and while the U.S. Food and Drug Administration first warned of its cancer-causing potential in 2001, botanical products and herbal remedies containing it can still be purchased online. Moreover, the vine has been found to be an environmental carcinogen through the contamination of food supplies of farming villages in the Balkans, where Aristolochia grows wildly in the local wheat fields. For years, scientists have known of some mutations in upper urinary tract cancer patients exposed to the plant toxin. But the genome-wide spectrum of mutations associated with aristolochic acid exposure remained largely unknown.

For the current study, the Johns Hopkins and Stony Brook team used whole-exome sequencing on 19 Taiwanese upper urinary tract cancer patients exposed to aristolochic acid, and seven patients with no suspected exposure to the toxin. The technique scours the exome, part of the human genome that contains codes for functional proteins and can reveal particular mutations, in this case, those associated with cancer.

"Genome-wide sequencing has allowed us to tie aristolochic acid exposure directly to an individual getting cancer," Kenneth Kinzler, Ph.D., professor of oncology in the Johns Hopkins Kimmel Cancer Center's Ludwig Center for Cancer Genetics and Therapeutics. "The technology gives us the recognizable mutational signature to say with certainty that a specific toxin is responsible for causing a specific cancer. Our hope is that using the more targeted whole-exome-sequencing process will provide the necessary data to guide public health decisions related to cancer prevention."

Specifically, Kinzler says they found an average of 753 mutations in each tumor from the toxin-exposed group compared with 91 in tumors from the non-exposed group. This level of mutation is more than that found in melanomas caused by ultraviolet radiation and lung cancer caused by smoking.

Members of the  toxin-exposed group had a large number of a particular, rare type of mistake (a mutational signature) in the ATCG chemical code of their DNA. The predominant mutation type in the toxin-exposed tumors (72 percent) was an A substituted with a T. In one instance, the scientists used the mutational signature to uncover an artistolochic-related tumor in a patient who was unaware of prior exposure.

This study illustrates how genomic sequencing could also be used to pinpoint a culprit carcinogen in some cancer clusters, says Margaret L. Hoang, Ph.D., lead author of the study. Cancer clusters are defined as an unusually large number of similar cancers occurring within a specific group of people, geographic area or period of time.

The research was funded by the Virginia and DK Ludwig Fund for Cancer Research, the Commonwealth Foundation and the Howard Hughes Medical Institute.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism-Causing Genetic Variant Identified
Novel approach expected to be useful for other diseases too.
Saturday, March 28, 2015
Scientists Pair Blood Test and Gene Sequencing to Detect Cancer
Scientists have combined the ability to detect cancer DNA in the blood with genome sequencing technology in a test that could be used to screen for cancers, monitor cancer patients for recurrence and find residual cancer left after surgery.
Friday, November 30, 2012
Scientific News
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Ancient Origins of Deadly Lassa Virus Uncovered
Working as part of an international team in North America and West Africa, a researcher at The Scripps Research Institute (TSRI) has published new findings showing the ancient roots of the deadly Lassa virus, a relative of Ebola virus, and how Lassa virus has changed over time.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Statistical Technique Helps Researchers Understand Tumor Makeup, Personalize Cancer Treatments
A new statistical method for analyzing next-generation sequencing (NGS) data that helps researchers study the genome of various organisms such as human tumors and could help bring about personalized cancer treatments has been unveiled.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!