Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Accurate Quantification of NGS Libraries

Published: Tuesday, August 20, 2013
Last Updated: Tuesday, August 20, 2013
Bookmark and Share
A study has found that Droplet Digital PCR (ddPCR™) can be used as an accurate and precise method for quality control of NGS libraries.

NGS library QC is essential to optimizing sequencing data yield, thereby increasing efficiency and throughput while lowering cost. The research was published in the in the August issue of Biotechniques.

"While real-time PCR has traditionally been used to quantify libraries, we determined that the only truly accurate way to reproducibly quantify our NGS libraries is with ddPCR," said Dr. Jason Bielas, lead author and Assistant Member in the Public Health Sciences Division at Fred Hutchinson Cancer Research Center in Seattle, Wash.

Quantifying NGS Libraries and Why It Matters 
Various commercial NGS technologies require users to load a precise number of viable DNA library molecules onto the instrument to optimize data yield. Performing a sequencing run with either too many or too few library molecules results in compromised data and sometimes no data at all – wasting sample, expensive reagents, user time, and instrument time.

Moreover, fewer bases might be sequenced if library molecules are not the appropriate length to fully utilize the sequencing platform, thus limiting throughput. Given this, quantifying library molecules and determining fragment size range have become crucial steps in library preparation.

NGS instrument manufacturers recommend quantifying libraries using real-time quantitative PCR (qPCR) and determining their size range using gel or capillary electrophoresis. Each of these has its limitations, though, and the steps recommended to address them, can be time-consuming and expensive.

Advantages of ddPCR for Quantifying NGS Libraries
To simultaneously quantify and determine the size distribution of target DNA with a single ddPCR assay, Dr. Bielas and his team exploited a relationship between droplet fluorescence and amplicon size. They confirmed the accuracy and precision of this method by applying it to NGS library preparation.

The ddPCR assay they designed – known as QuantiSize – was developed using the QX100 ddPCR system from Bio-Rad Laboratories. QuantiSize offers the ability to determine the absolute quantity and the detailed size distribution of target DNA in a single ddPCR reaction well, thus avoiding the drawbacks of other independent quantification and size determination methods.

"Now that we have discovered this new correlation, we can also use ddPCR to extract more information on the characteristics of DNA based on the range of fluorescence that can occur within each droplet," said Bielas.

Having demonstrated the efficacy of this technique, Dr. Bielas is now planning to leverage the relationship between ddPCR fluorescence and amplicon size to explore mutagenic deletion events in both the human nuclear and mitochondrial genomes.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bio-Rad Acquires Sequencing Technology Company GnuBIO
GnuBIO is a privately-held life sciences company that has developed a droplet-based DNA sequencing technology.
Friday, April 11, 2014
Accurate Detection of Extremely Rare Mitochondrial DNA Deletions Associated with Aging
The study published in Aging Cell identifies a new tool to accurately analyze extremely rare mitochondrial DNA deletions associated with a range of diseases and disorders as well as aging.
Thursday, September 05, 2013
Scientific News
The Changing Tides of the In Vitro Diagnostics Market
With the increasing focus in personalized medicine, diagnostics plays a crucial role in patient monitoring.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Data Mining DNA For Polycystic Ovary Syndrome Genes
A new Northwestern Medicine genome-wide association study of PCOS – the first of its kind to focus on women of European ancestry – has provided important new insights into the underlying biology of the disorder.
Viral Comparisons
ORNL team applies genomics expertise to analyze, map virus sequence database.
The Tree of Life — More Like A Bush
New species evolve whenever a lineage splits off into several. Because of this, the kinship between species is often described in terms of a ‘tree of life’, where every branch constitutes a species.
Ancient Origins of Deadly Lassa Virus Uncovered
Working as part of an international team in North America and West Africa, a researcher at The Scripps Research Institute (TSRI) has published new findings showing the ancient roots of the deadly Lassa virus, a relative of Ebola virus, and how Lassa virus has changed over time.
Furthering Data Analysis of Next-gen Sequencing to Facilitate Research
Researchers at Cincinnati Children's Hospital Medical Center have developed a user-friendly, integrated platform for analyzing the transcriptomic and epigenomic "big data.
Statistical Technique Helps Researchers Understand Tumor Makeup, Personalize Cancer Treatments
A new statistical method for analyzing next-generation sequencing (NGS) data that helps researchers study the genome of various organisms such as human tumors and could help bring about personalized cancer treatments has been unveiled.
‘Fishing Expedition’ Nets Nearly Tenfold Increase in Number of Sequenced Virus Genomes
Newly developed computational tool finds 12,500 genomes of viruses that infect microbes.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!