Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tool for the Identification of Targeted Sequences from Multidimensional High Throughput Sequencing Data

Published: Monday, October 07, 2013
Last Updated: Monday, October 07, 2013
Bookmark and Share
This article illustrated the use of InsertionMapper which consists of four independently working modules.

Abstract

BACKGROUND:
The advent of next-generation high-throughput technologies has revolutionized whole genome sequencing, yet some experiments require sequencing only of targeted regions of the genome from a very large number of samples. These regions can be amplified by PCR and sequenced by next-generation methods using a multidimensional pooling strategy. However, there is at present no available generalized tool for the computational analysis of target-enriched NGS data from multidimensional pools.

RESULTS:
Here we present InsertionMapper, a pipeline tool for the identification of targeted sequences from multidimensional high throughput sequencing data. InsertionMapper consists of four independently working modules: Data Preprocessing, Database Modeling, Dimension Deconvolution and Element Mapping. We illustrate InsertionMapper with an example from our project 'New reverse genetics resources for maize', which aims to sequence-index a collection of 15,000 independent insertion sites of the transposon Ds in maize. Identified sequences are validated byPCR assays. This pipeline tool is applicable to similar scenarios requiring analysis of the tremendous output of short reads produced in NGS sequencing experiments of targeted genome sequences.

CONCLUSIONS:
InsertionMapper is proven efficacious for the identification of target-enriched sequences from multidimensional high throughput sequencing data. With adjustable parameters and experiment configurations, this tool can save great computational effort to biologists interested in identifying their sequences of interest within the huge output of modern DNA sequencers. InsertionMapper is freely accessible at https://sourceforge.net/p/insertionmapper and http://bo.csam.montclair.edu/du/insertionmapper.

This article is puclished online in BMC Genomics and is free to access.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Survey of Error-Correction Methods for Next Generation Sequencing
This article provides a review of error-correction algorithms for NGS data and their comparative evaluation.
Wednesday, February 20, 2013
In-solution Hybrid Capture of Bisulfite-converted DNA for Targeted Bisulfite Sequencing of 174 ADME Genes
The aim of this study was to develop a method for the analysis of DNA methylation patterns in 174 ADME genes.
Monday, February 11, 2013
Genomic Sequencing in Clinical Trials
In this article, researchers from Northwestern University Feinberg review the current and future directions of clinical research with respect to genomic sequencing.
Wednesday, February 15, 2012
CAPRG: Sequence Assembling Pipeline for Next Generation Sequencing of Non-Model Organisms
In addition to providing evaluation of CAPRG performance, scientists observed that the different assembly (inter-assembly) results could be integrated to enhance the putative gene coverage for any transcriptomics study.
Wednesday, February 15, 2012
Rapid Screening of Complex DNA Samples by Single-Molecule Amplification and Sequencing
Researchers from Karolinska Institutet have developed a simple, rapid and robust method that enables laboratories to perform single-molecule amplicon sequencing from sub-picogram quantities of DNA without the need for special equipment.
Friday, June 03, 2011
Scientific News
Decoding the Genome of the Olive Tree
A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree. This work will facilitate genetic improvement for production of olives and olive oil, two key products in the Spanish economy and diet.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Biomarkers That Could Help Give Cancer Patients Better Survival Estimates Discovered
UCLA research may also help scientists suppress dangerous genetic sequences.
Mobile Laboratories Help Track Zika Spread Across Brazil
Researchers from the University of Birmingham are working with health partners in Brazil to combat the spread of Zika virus by deploying a pair of mobile DNA sequencing laboratories on a medical ‘road trip’ through the worst-hit areas of the country.
How “Silent” Genetic Changes Drive Cancer
The researchers found that EXOSC2 expression is enhanced in metastatic tumors because their cells have increased levels of a tRNA called GluUUC.
‘Jumping Gene’ Took Peppered Moths To The Dark Side
Researchers from the University of Liverpool have identified and dated the genetic mutation that gave rise to the black form of the peppered moth, which spread rapidly during Britain’s Industrial Revolution.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
How Did The Giraffe Get Its Long Neck?
Clues about the evolution of the giraffe’s long neck have now been revealed by new genome sequencing.
Big Data Can Save Lives
The sharing of genetic information from millions of cancer patients around the world could be key to revolutionising cancer prevention and care, according to a leading cancer expert from Queen's University Belfast.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!