Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Neanderthal Viruses Found in Modern Humans

Published: Tuesday, November 19, 2013
Last Updated: Tuesday, November 19, 2013
Bookmark and Share
Ancient viruses from Neanderthals have been found in modern human DNA by researchers at Oxford University and Plymouth University.

The researchers compared genetic data from fossils of Neanderthals and another group of ancient human ancestors called Denisovans to data from modern-day cancer patients. They found evidence of Neanderthal and Denisovan viruses in the modern human DNA, suggesting that the viruses originated in our common ancestors more than half a million years ago.

This latest finding, reported in Current Biology, will enable scientists to further investigate possible links between ancient viruses and modern diseases including HIV and cancer, and was supported by the Wellcome Trust and Medical Research Council (MRC).

Around 8% of human DNA is made up of 'endogenous retroviruses' (ERVs), DNA sequences from viruses which pass from generation to generation. This is part of the 90% of our DNA with no known function, sometimes called 'junk' DNA.

'I wouldn't write it off as "junk" just because we don't know what it does yet,' said Dr Gkikas Magiorkinis, an MRC Fellow at Oxford University's Department of Zoology. 'Under certain circumstances, two "junk" viruses can combine to cause disease – we've seen this many times in animals already. ERVs have been shown to cause cancer when activated by bacteria in mice with weakened immune systems.'

Dr Gkikas and colleagues are now looking to further investigate these ancient viruses, belonging to the HML2 family of viruses, for possible links with cancer and HIV.

How HIV patients respond to HML2 is related to how fast a patient will progress to AIDS, so there is clearly a connection there,' said Dr Magiorkinis, an author on the latest study. 'HIV patients are also at much higher risk of developing cancer, for reasons that are poorly-understood. It is possible that some of the risk factors are genetic, and may be shared with HML2. They also become reactivated in cancer and HIV infection, so might prove useful as a therapy target in the future.'

The team are now investigating whether these ancient viruses affect a person's risk of developing diseases such as cancer. Combining evolutionary theory and population genetics with cutting-edge genetic sequencing technology, they will test if these viruses are still active or cause disease in modern humans.

'Using modern DNA sequencing of 300 patients, we should be able to see how widespread these viruses are in the modern population. We would expect viruses with no negative effects to have spread throughout most of the modern population, as there would be no evolutionary pressure against it. If we find that these viruses are less common than expected, this may indicate that the viruses have been inactivated by chance or that they increase mortality, for example through increased cancer risk,' said Dr Robert Belshaw, formerly of Oxford University and now a lecturer at Plymouth University, who led the research.

'Last year, this research wouldn't have been possible. There were some huge technological breakthroughs made this summer, and I expect we'll see even greater advances in 2014. Within the next 5 years, we should be able to say for sure whether these ancient viruses play a role in modern human diseases.'

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Launch of £90m Initiative in Big Data and Drug Discovery at Oxford University
'Big data' to revolutionise healthcare.
Tuesday, May 07, 2013
Scientific News
Research at St Thomas’s Hospital Exploring Causative Factors of Atopic Eczema and Food Allergy in Infants
Carsten Flohr and his research group at St Thomas’s hospital, London are currently investigating the interaction between skin and gut microbiota in relation to the associated risk of atopic eczema (AE) and food allergy in infants.
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Proteins Crucial to Loss of Hearing Identified
Proteins play key role in genes that help auditory hair cells grow.
New Virus Identified In Blood Supply
Scientists have discovered a new virus that can be transmitted through the blood supply.
Far-reaching Genetic Study of 1,000 UK People
300,000 gene variants from 1,000 people made publically available via F1000Research.
DNA Alterations as Among Earliest to Occur in Lung Cancer Development
Genetic footprints of precancer detectable in some blood samples.
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Genetic Sleuthing
Sabeti team applies Ebola methods to shed light on spread of Lassa fever.
Seeking “Gold Standard” Wastewater Treatments
Metagenomic analyses lend insights into how microbes break down wastewater contaminants.
Using Genetic Sequencing to Manage Cancer in Children
A team of scientists have investigated the feasibility of incorporating clinical sequencing information into the care of young cancer patients.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos