Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Pinpoint Cell Type and Brain Region Affected by Gene Mutations in Autism

Published: Tuesday, November 26, 2013
Last Updated: Tuesday, November 26, 2013
Bookmark and Share
UCSF-led study zeroes in on when and where disrupted genes exert effects.

A team led by UC San Francisco (UCSF) scientists has identified the disruption of a single type of cell – in a particular brain region and at a particular time in brain development – as a significant factor in the emergence of autism.

The finding, reported in the Nov. 21 issue of Cell, was made with techniques developed only within the last few years and marks a turning point in autism spectrum disorders (ASDs) research.

Large-scale gene-sequencing projects are revealing hundreds of autism-associated genes. Scientists have begun to leverage new methods to decipher how mutations in these disparate genes might converge to exert their effects in the developing brain.

The new research focused on just nine genes, those most strongly associated with autism in recent sequencing studies, and investigated their effects using precise maps of gene expression during human brain development.

Led by Jeremy Willsey, a graduate student in the laboratory of senior author Matthew W. State, MD, PhD, of UCSF, the group showed that this set of genes contributes to abnormalities in brain cells known as cortical projection neurons in the deepest layers of the developing prefrontal cortex, during the middle period of fetal development.

Though a range of developmental scenarios in multiple brain regions is surely at work in ASDs, the researchers said the ability to place these specific genetic mutations in one specific set of cells – among hundreds of cell types in the brain, and at a specific point in human development – is a critical step in beginning to understand how autism comes about.

“Given the small subset of autism genes we studied, I had no expectation that we would see the degree of spatiotemporal convergence that we saw,” said State, an international authority on the genetics of neurodevelopmental disorders.

“This strongly suggests that, though there are hundreds of autism risk genes, the number of underlying biological mechanisms will be far fewer," he said. "This is a very important clue to advance precision medicine for autism toward the development of personalized and targeted therapies.”

Complex Genetic Architecture of ASDs

ASDs, which are marked by deficits in social interaction and language development, as well as by repetitive behaviors and/or restricted interests, are known to have a strong genetic component.

But these disorders are exceedingly complex, with considerable variation in symptoms and severity, and little consistency in the mutations among affected individuals.

Instead, with the rise of new sequencing methods over the past several years, researchers have identified many rare, non-inherited, spontaneous mutations that appear to act in combination with other genetic and non-genetic factors to cause ASDs. According to some estimates, mutations in as many as 1,000 genes could play a role in the development of these disorders.

While researchers have been heartened that specific genes are now rapidly being tied to ASDs, State said the complex genetic architecture of ASDs is also proving to be challenging.

“If there are 1,000 genes in the population that can contribute to risk in varying degrees and each has multiple developmental functions, it is not immediately obvious how to move forward to determine what is specifically related to autism," State said. "Without this, it is very difficult to think about how to develop new and better medications,” he said.

Focusing on Nine Genes

To begin to grapple with those questions, the researchers involved in the new study first selected as “seeds” the nine genes that have been most strongly tied to ASDs in recent sequencing research from their labs and others.

Importantly, these nine genes were chosen solely because of the statistical evidence for a relationship to ASDs, not because their function was known to fit a theory of the cause of ASDs. “We asked where the leads take us, without any preconceived idea about where they should take us,” said State.

The team then took advantage of BrainSpan, a digital atlas assembled by a large research consortium, including co-author Nenad Šestan, MD, PhD, and colleagues at Yale School of Medicine. Based on donated brain specimens, BrainSpan documents how and where genes are expressed in the human brain over the lifespan.

The scientists, who also included Bernie Devlin, PhD, of The University of Pittsburgh School of Medicine; Kathryn Roeder, PhD, of Carnegie-Mellon University; and James Noonan, PhD, of Yale School of Medicine, used this tool to investigate when and where the nine seed genes join up with other genes in “co-expression networks” to wire up the brain or maintain its function.

The resulting co-expression networks were then tested using a variety of pre-determined criteria to see whether they showed additional evidence of being related to ASDs. Once this link was established, the authors were then able to home in on where in the brain and when in development these networks were localizing. This proved to be in cortical projection neurons found in layers 5 and 6 of the prefrontal cortex, and during a time period spanning 10 to 24 weeks after conception. Notably, a study using different methods and published in the same issue of Cell also implicates cortical projection neurons in ASDs.

“To see these gene networks as highly connected as they are, as convergent as they are, is quite amazing,” said Willsey “An important outcome of this study is that, for the first time, it gives us the ability to design targeted experiments based on a strong idea about when and where in the brain we should be looking at specific genes with specific mutations.”

In addition to its importance in ASD research, State sees the new work as a reflection of the tremendous value of “big science” efforts, such as large-scale collaborative genomic studies and the creation of foundational resources such as the BrainSpan atlas.

“We couldn’t have done this even two years ago,” State said, “because we didn’t have the key ingredients: a set of unbiased autism genes that we have confidence in, and a map of the landscape of the developing human brain. This work combines large-scale ‘-omics’ data sets to pivot into a deeper understanding of the relationship between complex genetics and biology.”

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children’s Hospital.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
International Fruit Pest Targeted by Genomic Research
The spotted wing drosophila is itself being targeted, thanks to groundbreaking genome sequencing.
Friday, December 06, 2013
DNA Found Outside Genes Plays Largely Unknown, Potentially Vital Roles
UCSF study identifies thousands of previously unknown RNA molecules.
Monday, July 01, 2013
Genetic Study Shows Europeans are One Big Family
Europeans are basically one big family, closely related to one another for the past thousand years, according to a new study of the DNA of people from across the continent.
Wednesday, May 08, 2013
Tick-Borne Lone Star Virus Identified through New Super-Fast Gene Sequencing
The tick-borne Lone Star virus has been conclusively identified as part of a family of other tick-borne viruses called bunyaviruses, which often cause fever, respiratory problems and bleeding.
Tuesday, May 07, 2013
New Center for Data Storage Research Established
Researchers in the Baskin School of Engineering at UC Santa Cruz are partnering with data storage industry to establish the Center for Research in Storage Systems (CRSS).
Thursday, March 28, 2013
New Network Being Built to Support Transfer of Big Data
The University of California, San Diego, is taking another leap forward in the name of enabling data-intensive science.
Thursday, March 21, 2013
National Study to Examine Risks, Benefits in Emergent Whole Genome Sequencing
UCSF School of Pharmacy faculty member to lead four-year, $2.4 million project.
Tuesday, March 19, 2013
'Defective' Virus Plays Major Role in Spread of Disease
Defective viruses now appear able to play an important role in the spread of disease, new research by UCLA life scientists indicates.
Friday, March 01, 2013
Methylome Modifications Offer New Measure of our “Biological” Age
Women live longer than men. Individuals can appear or feel years younger – or older – than their chronological age. Diseases can affect our aging process. When it comes to biology, our clocks clearly tick differently.
Monday, November 26, 2012
Gladstone Scientists Map Genomic Blueprint of the Heart
Findings could help scientists combat the underlying causes of congenital heart disease.
Friday, September 14, 2012
Beyond Base-pairs: Mapping the Functional Genome
Unprecedented study maps significant portion of the functional sequences of the mouse genome.
Wednesday, July 04, 2012
Gene Mutations Likely Cause of Massive Brain Asymmetry
It is hoped that these genetic changes can be inhibited by designer drugs, thus avoiding drastic surgery.
Tuesday, June 26, 2012
Scientific News
Research at St Thomas’s Hospital Exploring Causative Factors of Atopic Eczema and Food Allergy in Infants
Carsten Flohr and his research group at St Thomas’s hospital, London are currently investigating the interaction between skin and gut microbiota in relation to the associated risk of atopic eczema (AE) and food allergy in infants.
Gut Bacteria Can Dramatically Amplify Cancer Immunotherapy
Manipulating microbes maximizes tumor immunity in mice.
Proteins Crucial to Loss of Hearing Identified
Proteins play key role in genes that help auditory hair cells grow.
New Virus Identified In Blood Supply
Scientists have discovered a new virus that can be transmitted through the blood supply.
Far-reaching Genetic Study of 1,000 UK People
300,000 gene variants from 1,000 people made publically available via F1000Research.
DNA Alterations as Among Earliest to Occur in Lung Cancer Development
Genetic footprints of precancer detectable in some blood samples.
Targeting DNA
Protein-based sensor could detect viral infection or kill cancer cells.
Genetic Sleuthing
Sabeti team applies Ebola methods to shed light on spread of Lassa fever.
Seeking “Gold Standard” Wastewater Treatments
Metagenomic analyses lend insights into how microbes break down wastewater contaminants.
Using Genetic Sequencing to Manage Cancer in Children
A team of scientists have investigated the feasibility of incorporating clinical sequencing information into the care of young cancer patients.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos