Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Involved in Cocaine Response Identified

Published: Tuesday, December 24, 2013
Last Updated: Tuesday, December 24, 2013
Bookmark and Share
UT Southwestern neuroscience researchers have identified the gene by comparing closely related strains of mice often used to study addiction and behavior patterns.

The researchers suspect that the newly identified gene, Cyfip2, determines how mammals respond to cocaine, although it is too soon to tell what the indications are for humans or for addiction, said Dr. Joseph Takahashi, chair of neuroscience and a Howard Hughes Medical Institute investigator at UT Southwestern and the senior author of the study.

The findings, reported in Science, evolved from examining the genetic differences between two substrains of the standard C57BL/6 mouse strain: a “J” strain from the Jackson Laboratory (C57BL/6J) and an “N” strain from the National Institutes of Health (C57BL/6N). Researchers compared the two strains of mice and used their differential responses to cocaine to identify the causative gene.

“We found that the ‘N’ strain has accumulated mutations over time, one of which has a very strong effect on cocaine response,” Dr. Takahashi said. “We propose that CYFIP2 – the protein produced by the Cyfip2 gene – is a key regulator of cocaine response in mammals.”

The Takahashi laboratory has identified about 100 genetic differences that affect protein sequences between the two mouse strains, meaning that there are many genetic differences whose effects are not yet known, he added.

“We identified this gene by first using a forward genetics strategy to search for differences in traits between the two mouse strains. We found a difference in cocaine response between them, with the C57BL/6N strain showing a reduced behavioral response,” Dr. Takahashi said. “We then carried out genetic mapping and whole genome sequencing, which allowed us to pinpoint the Cyfip2 gene as the causative one in a rapid and unambiguous way.”

The C57BL/6J “J” mouse is the gold-standard strain for most research involving the mouse. For example, the reference sequence for the mouse genome, as well as most behavioral and physiological experiments, are based on the “J” strain. However, the International Knockout Mouse Consortium will be shifting emphasis to the “N” strain since they have created 17,000 embryonic stem cell lines with gene mutations that originate from the “N” strain. Thus, identifying genetic differences between these two mouse strains is important, Dr. Takahashi said.

“Although mouse geneticists pay close attention to the specific strains of mice that they use, it has not been generally appreciated that sublines of the same strain of mouse might differ so profoundly. Thus, a ‘C57BL/6’ mouse might appear to be the same, but in fact there are many, many sublines of this laboratory mouse, and it is important to know which exact one you are using. Since the knockout mouse project has produced so many mutations (17,000) derived from the ‘N’ strain, it will be even more important to keep in mind that not all C57BL/6 mice are the same.”

The study was supported by the National Institute on Drug Abuse, by the National Institutes of Health and by the Howard Hughes Medical Institute.

Other UT Southwestern authors include Dr. Vivek Kumar, Instructor; Kyungin Kim, Research Associate; Chryshanthi Joseph, Research Associate; Dr. Saïd Kourrich, Assistant Professor of Psychiatry; and Dr. Hung Chung Huang, Computational Biologist II. Other researchers included Seung-Hee Yoo, former instructor of neuroscience at UT Southwestern and now an assistant professor of biochemistry and molecular biology at UT Health Science Center, Houston; Martha Vitaterna from Northwestern University; Gary Churchill from The Jackson Laboratory; Fernando Pardo-Manuel de Villena from the University of North Carolina at Chapel Hill; and Antonello Bonci from the Intramural Research Program of the National Institute of Drug Abuse / National Institutes of Health.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Decoding the Genome of the Olive Tree
A team of scientists from three Spanish centers has sequenced, for the first time ever, the complete genome of the olive tree. This work will facilitate genetic improvement for production of olives and olive oil, two key products in the Spanish economy and diet.
Four Newly-Identified Genes Could Improve Rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Biomarkers That Could Help Give Cancer Patients Better Survival Estimates Discovered
UCLA research may also help scientists suppress dangerous genetic sequences.
Mobile Laboratories Help Track Zika Spread Across Brazil
Researchers from the University of Birmingham are working with health partners in Brazil to combat the spread of Zika virus by deploying a pair of mobile DNA sequencing laboratories on a medical ‘road trip’ through the worst-hit areas of the country.
How “Silent” Genetic Changes Drive Cancer
The researchers found that EXOSC2 expression is enhanced in metastatic tumors because their cells have increased levels of a tRNA called GluUUC.
‘Jumping Gene’ Took Peppered Moths To The Dark Side
Researchers from the University of Liverpool have identified and dated the genetic mutation that gave rise to the black form of the peppered moth, which spread rapidly during Britain’s Industrial Revolution.
Benchtop Automation Trends
Gain a better understanding of current interest in and future deployment of benchtop automated systems.
How Did The Giraffe Get Its Long Neck?
Clues about the evolution of the giraffe’s long neck have now been revealed by new genome sequencing.
Big Data Can Save Lives
The sharing of genetic information from millions of cancer patients around the world could be key to revolutionising cancer prevention and care, according to a leading cancer expert from Queen's University Belfast.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!