Corporate Banner
Satellite Banner
Next Gen Sequencing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Ubiquitous Protein Controls Copying of Resistant DNA

Published: Monday, June 09, 2014
Last Updated: Wednesday, June 11, 2014
Bookmark and Share
Researchers have demonstrated how the protein could put antibiotic-resistant bugs in handcuffs.

Staph infections that become resistant to multiple antibiotics don't happen because the bacteria themselves adapt to the drugs, but because of a kind of genetic parasite they carry called a plasmid that helps its host survive the antibiotics.

Plasmids are rings of bare DNA containing a handful of genes that are essentially freeloaders, borrowing most of what they need to live from their bacterial host. The plasmids copy themselves and go along for the ride when the bacteria divide to copy themselves.

A team from Duke and the University of Sydney in Australia has solved the structure of a key protein that drives DNA copying in the plasmids that make staphylococcus bacteria antibiotic-resistant. Knowing how this protein works may now help researchers devise new ways to stop the plasmids from spreading antibiotic resistance in staph by preventing the plasmids from copying themselves.

"If plasmids can't replicate, they go away," said lead author Maria Schumacher, an associate professor of biochemistry in the Duke University School of Medicine. "This is a fantastic new target for antibiotics."

The work appears the week of June 9 in the Proceedings of the National Academy of Sciences.

An essential part of biology, plasmids are so minimalistic they're not even considered alive by themselves. But they're good at ferrying genes from one kind of bacteria to another in a process called horizontal gene transfer. They also excel at adapting to environmental conditions more quickly than their bacterial hosts. Plasmids are able to develop new defenses to an antibiotic and then share that new trick with other bacteria.

Through several years of laborious structural biology to figure out the specific shapes of the molecules involved, the research team has mapped out the structure and function of a protein called RepA, which is crucial to the plasmids' ability to copy its DNA and make a new plasmid.
RepA is a protein that sticks to the beginning of the plasmid's DNA sequence and starts the copying process. "This protein is essential to everything," Schumacher said. "If you don't have it, the plasmid will quickly cease to exist."

Plasmids also need a mechanism to prevent themselves from making too many copies, which would strangle their bacterial host. The researchers have found that RepA is crucial to that function as well.
RepA naturally sticks together in pairs. When a pair of RepA proteins bumps into another pair, as when the cell is starting to get crowded with plasmids, the two pairs of RepA preferentially stick to each other. They form a complex back-to-back, with both having their DNA-grabbing parts facing outward.

When RepA forms this four-part molecule, the plasmids are said to be 'handcuffed,' because two rings of DNA are captured with the locked-up and non-functional RepA complex in the middle.

Once it is handcuffed like this, the plasmid will no longer replicate. Schumacher said this mechanism is apparently how RepA prevents the plasmids from overpopulating the bacterial cell.
Schumacher says RepA is ubiquitous in the plasmid world and doesn't bear much resemblance to other proteins, or to human proteins, making it an attractive drug target. She is hopeful the molecule could be a new site to attack with antibiotics.

"This has been a fun project because we saw many things we didn't expect to see," Schumacher said.

The research was supported by the National Institutes of Health and Department of Energy in the U.S., and the National Health and Medical Research Council of Australia.




Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Antibiotics Discovered While Sifting Through Human Microbiome
Researchers identify genes in a microbe’s genome that produce antibiotic compounds, then synthesize them without the need for bacterial culture.
A Genome-wide View of Human DNA Viruses
In this study, Duplex sequencing was used to accurately analyse the genome-wide rate of spontaneous mutation of human adenovirus C5 (HAdv5).
Peer Review is in Crisis, But Should be Fixed, Not Abolished
After the time to get the science done, peer review has become the slowest step in the process of sharing studies, and some scientists have had enough.
Rare Immunodeficiency Yields Unexpected Insights
Scientists uncover previously unknown gene mutation revealing the role of a key molecule involved in immune cell development.
Illumina Contributes to ClinVar Database
The contribution includes variants of all classifications, from pathogenic to benign, identified during interpretation of whole genome sequences generated in the CLIA-certified, CAP-accredited Illumina Clinical Services Laboratory.
Agilent Presents Early Career Professor Award to Dr. Roeland Verhaak
JAX professor recognized for the development and implementation of workflows for the analysis of big-data from transcriptomics to next generation sequencing approaches.
Integrated Omics Analysis
Studying multi-omics promises to give a more holistic picture of the organism and its place in its ecosystem, however despite the complexities involved those within the field are optimistic.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!