Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Wyss Institute Models a Human Disease in an Organ-on-a-Chip

Published: Friday, November 09, 2012
Last Updated: Friday, November 09, 2012
Bookmark and Share
Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University have mimicked pulmonary edema in a microchip lined by living human cells, as reported today in the journal Science Translation Medicine.

They used this "lung-on-a-chip" to study drug toxicity and identify potential new therapies to prevent this life-threatening condition.

The study offers further proof-of-concept that human "organs-on-chips" hold tremendous potential to replace traditional approaches to drug discovery and development.

"Major pharmaceutical companies spend a lot of time and a huge amount of money on cell cultures and animal testing to develop new drugs," says Donald Ingber, M.D., Ph.D., founding director of the Wyss Institute and senior author of the study, "but these methods often fail to predict the effects of these agents when they reach humans."

The lung-on-a-chip device, which the team first described only two years ago, is a crystal clear, flexible polymer about the size of a memory stick that contains hollow channels fabricated using computer microchip manufacturing techniques. Two of the channels are separated by a thin, flexible, porous membrane that on one side is lined with human lung cells from the air sac and exposed to air; human capillary blood cells are placed on the other side with medium flowing over their surface. A vacuum applied to side channels deforms this tissue-tissue interface to re-create the way human lung tissues physically expand and retract when breathing.

Wyss Technology Development Fellow Dongeun Huh, Ph.D., who also holds appointments at Boston Children's Hospital and Harvard Medical School, studied a cancer chemotherapy drug called interleukin-2 -- or IL-2 for short -- in the lung-on-a-chip. A major toxic side effect of IL-2 is pulmonary edema, which is a deadly condition in which the lungs fill with fluid and blood clots.

When IL-2 was injected into the blood channel of the lung-on-a-chip, fluid leaked across the membrane and two tissue layers, reducing the volume of air in the other channel and compromising oxygen transport -- just as it does in lungs of human patients when it is administered at the equivalent doses and over the same time course. Blood plasma proteins also crossed into the air channel, leading to the formation of blood clots in the air space, as they do in humans treated with IL-2.

But one result came as a surprise.

It turns out the physical act of breathing greatly enhances the effects of IL-2 in pulmonary edema -- "something that clinicians and scientists never suspected before," Ingber says. When the team turned on the vacuum attached to the chip to simulate breathing, it increased fluid leakage more than three-fold when treated with the clinically relevant IL-2 dose, and the Wyss team confirmed that the same response occurs in an animal model of pulmonary edema. This result could suggest that doctors treating patients on a respirator with IL-2 should reduce the tidal volume of air being pushed into the lungs, for example, in order to minimize the negative side effects of this drug.

Most exciting for the future of drug testing was the Wyss team's finding that "this on-chip model of human pulmonary edema can be used to identify new potential therapeutic agents in vitro," Ingber says. The pulmonary edema symptoms in the lung-on-a-chip disease model could be prevented by treating the tissues with a new class of drug, a transient receptor potential vanilloid 4 (TRPV4) channel blocker, under development by GlaxoSmithKline (GSK). In a separate study published by the GSK team in the same issue of Science Translation Medicine, the beneficial effects of TRPV4 inhibition in reducing pulmonary edema were independently validated using animal models of pulmonary edema caused by heart failure.

"In just a little more than two years, we've gone from unveiling the initial design of the lung-on-a-chip to demonstrating its potential to model a complex human disease, which we believe provides a glimpse of what drug discovery and development might look like in the future," Ingber says.

The cross-disciplinary, multi-institutional team that was led by Ingber and Huh also included Wyss Postdoctoral Fellow Daniel Leslie, Ph.D.; Benjamin Matthews, M.D., assistant professor of pediatrics in the Vascular Biology Program at Boston Children's Hospital and Harvard Medical School; Wyss Institute Researcher Jacob Fraser; Samuel Jurek, a researcher at Boston Children's Hospital and Harvard Medical School; Senior Wyss Staff Scientist Geraldine Hamilton, Ph.D.; and Senior Scientific Investigator Kevin Thorneloe, Ph.D., and Investigator M. Allen McAlexander from GlaxoSmithKline. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at Harvard School of Engineering and Applied Sciences.

"Organs-on-a-chip represents a new approach to model the structure, biology, and function of human organs, as evidenced by the complex breathing action of this engineered lung. This breathing action was key to providing new insight into the etiology of pulmonary edema," said Dr. James M. Anderson, M.D., Ph.D., director of the NIH Division of Program Coordination, Planning, and Strategic Initiatives that provided partial support for this research through the Common Fund's Regulatory Science program. "These results provide support for the broader use of such microsystems in studying disease pathology and hopefully for identifying new therapeutic targets."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Lucentis Effective for Proliferative Diabetic Retinopathy
NIH-funded clinical trial marks first major advance in therapy in 40 years.
Blocking the Transmission Of Malaria Parasites
Vaccine candidate administered for the first time in humans in a phase I clinical trial led by Oxford University’s Jenner Institute, with partners Imaxio and GSK.
First Therapy Appearing to Reverse Decline in Parkinson’s
An FDA-approved drug for leukemia improved cognition, motor skills and non-motor function in patients with Parkinson’s disease and Lewy body dementia in a small clinical trial, say researchers at Georgetown University Medical Center (GUMC).
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Treatment for Rare Bleeding Disorder is Effective
Researchers in Manchester have demonstrated for the first time the relative safety and effectiveness of treatment, eltrombopag, in children with persistent or chronic immune thrombocytopenia (ITP), as part of an international duo of studies.
HIV Vaccine Human Trials Begin
Baltimore-based Institute has begun enrolling volunteers for initial phase 1 clinical trials.
New Therapy Reduces Symptoms of Inherited Enzyme Deficiency
A phase three clinical trial of a new enzyme replacement medication, sebelipase alfa, showed a reduction in multiple disease-related symptoms in children and adults with lysosomal acid lipase deficiency, an inherited enzyme deficiency that can result in scarring of the liver and high cholesterol.
Fixing Holes in the Heart Without Invasive Surgery
UV-light enabled catheter is a medical device which represents a major shift in how cardiac defects are repaired.
Atriva Therapeutics GmbH Develops Innovative Flu Drug
Highly effective against seasonal and pandemic influenza.
Study Removes Cancer Doubt for Multiple Sclerosis Drug
Researchers from Queen Mary University of London are calling on the medical community to reconsider developing a known drug to treat people with relapsing Multiple sclerosis after new evidence shows it does not increase the risk of cancer as previously thought.
Scroll Up
Scroll Down

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos