Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Leukemia Treatment Using Child’s Own Re-engineered Immune Cells

Published: Thursday, December 13, 2012
Last Updated: Thursday, December 13, 2012
Bookmark and Share
Engineered immune cells produce complete response in child with an aggressive pediatric leukemia.

By reprogramming a 7-year-old girl’s own immune cells to attack an aggressive form of childhood leukemia, a pediatric oncologist has achieved a complete response in his patient, who faced grim prospects when she relapsed after conventional treatment. The innovative experimental therapy used bioengineered T cells, custom-designed to multiply rapidly in the patient, and then destroy leukemia cells. After the treatment, the child’s doctors found that she had no evidence of cancer.

Pediatric oncologist Stephan A. Grupp, MD, PhD, of The Children’s Hospital of Philadelphia, and colleagues from the University of Pennsylvania presented updated results of the clinical trial involving these engineered cells at the American Society of Hematology (ASH) annual meeting today in Atlanta. Grupp is the director of Translational Research for the Center for Childhood Cancer Research at The Children’s Hospital of Philadelphia, and a professor of Pediatrics at the Perelman School of Medicine at the University of Pennsylvania.

Pediatric research builds on collaboration with Penn scientists developing treatments for adult B-cell leukemias

Grupp’s research builds on his ongoing collaboration with Penn scientists who originally developed the modified T cells as a treatment for B-cell leukemias. The Penn team reported on early results of a trial using this cell therapy in adult chronic lymphocytic leukemia (CLL) patients in August of 2011. Carl H. June, MD, of the Perelman School of Medicine at the University of Pennsylvania, leads this research group, which along with Grupp’s work, is presenting new data at the ASH meeting showing that nine of 12 patients with advanced leukemias in the clinical trial, including two children, responded to treatment with CTL019 cells.

One of the nine responding patients is the 7-year-old with acute lymphoblastic leukemia (ALL). Grupp and Penn colleagues adapted the treatment to combat ALL, the most common childhood leukemia, and also the most common childhood cancer. Although physicians can cure roughly 85 percent of ALL cases, the remaining 15 percent of such cases stubbornly resist treatment.

The CTL019 therapy, formerly called CART19, represents a new approach in cancer treatment. T cells are the workhorses of the immune system, recognizing and attacking invading disease cells. However, cancer cells fly under the radar of immune surveillance, evading detection by T cells. CAR T cells (chimeric antigen receptor T cells) are engineered to specifically target B cells, which become cancerous in certain leukemias, such as ALL and CLL, as well as types of lymphoma, another cancer of the immune cells.

CD19 is a protein found only on the surface of B cells. By creating an antibody that recognizes CD19, and physically connecting that antibody to T cells, the researchers have created a guided missile that locks in on and kills B cells, thereby attacking B-cell leukemia.

In using the CTL019 treatment in his pediatric patient, Grupp found that the very activity that destroyed leukemia cells also stimulated a highly activated immune response called a cytokine release syndrome. The child became very ill and had to be admitted to the intensive care unit.

Grupp and his team decided to counteract these toxic side effects by using 2 immunomodulating drugs that blunted the overactive immune response and rapidly relieved the child’s treatment-related symptoms. These results were effective enough that this approach is now being successfully incorporated into CTL019 treatments for adults as well.

The immunomodulating drugs did not interfere with the CTL019 therapy’s anti-leukemia benefits, which have persisted 6 months after the infusion of cell therapy. This persistence is essential, because the engineered T cells remain in the patient’s body to protect against a recurrence of the cancer.

Future focus on developing more widely available treatments

“These engineered T cells have proven to be active in B cell leukemia in adults,” said Grupp. “We are excited to see that the CTL019 approach may be effective in untreatable cases of pediatric ALL as well. Our hope is that these results will lead to widely available treatments for high-risk B cell leukemia and lymphoma, and perhaps other cancers in the future.”

Timing of experimental therapies for relapsed patients important

“This type of pioneering research addresses the importance of timing when considering experimental therapies for relapsed patients,” added Susan R. Rheingold, MD, one of the leaders in the Children’s Hospital program for children with relapsed leukemia. “To ensure newly relapsed patients with refractory leukemia meet criteria for options like CTL019, we must begin exploring these innovative approaches earlier than ever before. Having the conversation with families earlier provides them more treatment options to offer the best possible outcome.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
New Database for Sharing MS Clinical Trial Data
A new database containing nearly 2500 patient records from the placebo arms of nine multiple sclerosis (MS) clinical trials is now available for research by qualified investigators.
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
BMS’s Opdivo Clinical Trial Shows Promise
Safety profile of the combination regimen from CheckMate -069 was consistent with previously reported studies and adverse events were managed using established safety algorithms.
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Cancer Drug Could Treat Blood Vessel Deformities
A drug currently being trialled in cancer patients could also be used to treat an often incurable condition that can cause painful blood vessel overgrowths inside the skin.
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
New Immunotherapy Trial for Type 1 Diabetes
The search for a treatment for Type 1 diabetes (T1D) - which affects over 400,000 people in the UK – will be stepped up with the start of a new phase one clinical trial at Guy’s Hospital in London.
Recruitment of First Patient in Clinical Study
Company has announced recruitment of first patient in clinical study assessing Visco-ease with Beatson Cancer Centre for the treatment of RIX.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!