Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

PATH Malaria Vaccine Initiative and Inovio Pharmaceuticals Partner

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Follow-on agreement will lead to clinical trials.

The PATH Malaria Vaccine Initiative (MVI) and Inovio Pharmaceuticals, Inc. announced a follow-on collaboration to advance malaria vaccine development and new vaccination delivery technologies. Researchers will test whether a novel vaccine approach that combines genetically engineered DNA with an innovative vaccine delivery technology called electroporation could induce an immune response in humans that protects against malaria parasite infection.

Malaria is a deadly disease that still kills more than 500,000 children under age 5 every year. MVI accelerates the development of malaria vaccines by joining its scientific, managerial, and field expertise with companies, universities, and governments to develop malaria vaccines and continue to test and invest in those with the most promise.

This follow-on agreement for clinical development builds on a 2010 research and development collaboration between Inovio and MVI. Inovio researchers and their academic collaborators developed novel DNA plasmids targeting multiple malaria parasite antigens and conducted studies in rodents to demonstrate induction of broad immune responses. The success of these studies resulted in an expanded collaboration, in which further testing demonstrated potent T cell and antibody responses in other animal models.

This DNA-based vaccine approach involves delivery of plasmid DNA by electroporation. Electroporation deploys controlled electrical impulses to create temporary pores in a cell membrane, allowing uptake of the synthetic DNA. The cell then uses the DNA's instructions to produce proteins that mimic the presence of the malaria pathogen, with the aim of inducing an immune response that provides protection against malaria.

"We are excited to bring this innovative delivery technology into clinical testing to see whether the compelling immune responses seen in animal models translate to humans," said Dr. David C. Kaslow, director of MVI. "Determining if and how these potent immune responses lead to protection against infection with the most deadly form of malaria is a high priority in our efforts to develop a next generation malaria vaccine."

The clinical study will contain two study arms. The first study arm will include three antigens, two pre-erythrocytic (CSP and TRAP) and one blood stage (AMA-1), shown previously to protect against Plasmodium falciparum, the most deadly malaria strain. The second study arm will include two additional pre-erythrocytic-stage antigens (LSA-1 and CelTOS).

Dr. J. Joseph Kim, President and CEO of Inovio, said, "We are pleased to work with MVI to advance into a human study with Inovio's plasmid DNA. Our synthetic vaccine platform has produced vaccine candidates against HPV, HIV, and influenza targets that have generated potent T cell immune responses observed in human clinical studies. Using the same platform technology, we have now generated encouraging data with preclinical testing of our malaria antigen plasmids. We are excited to work with our collaborators at MVI toward the ultimate goal of conquering malaria."

The focus on vaccines that deliver multiple antigens simultaneously is a leading approach to developing highly effective malaria vaccines. The Inovio platform is technically well suited to deliver multiple target antigens and has effectively demonstrated in preclinical studies an ability to induce potent immune responses to these antigens. This is one of a series of platforms MVI plans to evaluate for its capacity to induce immune responses that confer protection from malaria infection in the human challenge model.

The Phase 1/2a clinical trial, which will begin in early 2014, will test Inovio's plasmid DNA and electroporation technology in approximately 30 individuals, as part of what is known as a challenge trial by controlled human malaria infection. Volunteers will be administered the DNA and then exposed to the malaria parasite through the bite of infected mosquitoes to see whether this approach prevents infection. If successful, this trial would provide valuable information that may further the development of a highly efficacious vaccine against malaria.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Inovio Pharmaceutical's DNA Vaccine for the MERS Virus Induces Robust Immune Response
No vaccine exists for the MERS virus that has killed 42% of those infected.
Monday, December 02, 2013
Scientific News
Therapy Halts Progression of Lou Gehrig’s Disease
Researchers at Oregon State University announced today that they have essentially stopped the progression of amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, for nearly two years in one type of mouse model used to study the disease – allowing the mice to approach their normal lifespan.
New Mechanism of Antitumor Action Identified
A team of UAB researchers and collaborators from the Catalan biotech company Ability Pharmaceuticals (UAB Research Park), have described a new mechanism of anti-tumour action, identified during the study and development of the new drug ABTL0812.
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
UTSW Researchers Identifies How Drugs Alter Pancreatic Cancer Cells
The findings were published in Cell Reports.
Researchers Identify Process that Causes Chronic Neonatal Lung Disease
Study determines how the NLRP3 inflammasome activates the protein Interleukin 1 beta.
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
BRCA1 Deficiency Increases the Sensitivity of Ovarian Cancer Cells to Auranofin
An anti-rheumatic drug could improve the prognosis for ovarian cancer patients exhibiting a deficiency of the DNA repair protein BRCA1, a study suggests.
Shingles Vaccine Helps Protect Older Patients with End-stage Renal Disease
Kaiser Permanente study advances knowledge about safety and effectiveness of vaccine commonly given to older adults.
AMRI Acquires Whitehouse Laboratories
Strategically extends AMRI's analytical offerings in rapidly expanding area of outsourcing services.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!