Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

IUPUI Stem Cell Research Could Expand Clinical Use of Regenerative Human Cells

Published: Friday, March 22, 2013
Last Updated: Friday, March 22, 2013
Bookmark and Share
Research has uncovered a method to produce retinal cells from regenerative human stem cells without the use of animal products, proteins or other foreign substances.

The study of human induced pluripotent stem cells (hiPSCs) has been pursued vigorously since they were first discovered in 2007 due to their ability to be manipulated into specific cell types. Scientists believe these cells hold considerable potential for cell replacement, disease modeling and pharmacological testing. However, clinical applications have been hindered by the fact that, to date, the cells have required animal products and proteins to grow and differentiate.

A research team led by Jason S. Meyer, Ph.D., assistant professor of biology, successfully differentiated hiPSCs in a lab environment—completely through chemical methods—to form neural retinal cell types (including photoreceptors and retinal ganglion cells). Tests have shown the cells function and grow just as efficiently as those cells produced through traditional methods.

“Not only were we able to develop these (hiPSC) cells into retinal cells, but we were able to do so in a system devoid of any animal cells and proteins,” Meyer said. “Since these kinds of stem cells can be generated from a patient’s own cells, there will be nothing the body will recognize as foreign.”

In addition, this research should allow scientists to better reproduce these cells because they know exactly what components were included to spur growth and minimize or eliminate any variations, Meyer said. Furthermore, the cells function in a very similar fashion to human embryonic stem cells, but without controversial or immune rejection issues because they are derived from individual patients.

“This method could have a considerable impact on the treatment of retinal diseases such as age-related macular degeneration and forms of blindness with hereditary factors,” Meyer said. “We hope this will help us understand what goes wrong when diseases arise and that we can use this method as platform for the development of new treatments or drug therapies.”

“We’re talking about bringing stem cells a significant step closer to clinical use,” Meyer added.

Meyer, along with two graduate students, have worked for two years on this research with the help of an Indiana University Collaborative Research Grant and funding from the School of Science at IUPUI and the American Health Assistance Foundation.

The research will be published in the April edition of Stem Cells Translational Medicine. Co-authors include Akshayalakshmi Sridhar and Melissa M. Steward.

Meyer began researching hiPSCs while he was a post-doctoral research associate at the University of Wisconsin in Madison, where James Thomson, Ph.D., was one of two investigators to develop hiPSCs from adult cells in 2007. The other, Shinya Yamanaka, Ph.D, from Japan’s Kyoto University, was awarded the Nobel Prize for Physiology or Medicine in 2012 for discovering the ability of mature cells to be reprogrammed into stem cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Therapy Halts Progression of Lou Gehrig’s Disease
Researchers at Oregon State University announced today that they have essentially stopped the progression of amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, for nearly two years in one type of mouse model used to study the disease – allowing the mice to approach their normal lifespan.
New Mechanism of Antitumor Action Identified
A team of UAB researchers and collaborators from the Catalan biotech company Ability Pharmaceuticals (UAB Research Park), have described a new mechanism of anti-tumour action, identified during the study and development of the new drug ABTL0812.
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
UTSW Researchers Identifies How Drugs Alter Pancreatic Cancer Cells
The findings were published in Cell Reports.
Researchers Identify Process that Causes Chronic Neonatal Lung Disease
Study determines how the NLRP3 inflammasome activates the protein Interleukin 1 beta.
Dengue Vaccine Enters Phase 3 Trial
Investigational vaccine to prevent ‘breakbone fever’ developed at NIH.
Trying to Conceive Soon After a Pregnancy Loss May Increase Chances of Live Birth
NIH study finds no reason for delaying pregnancy attempts after a loss without complications.
BRCA1 Deficiency Increases the Sensitivity of Ovarian Cancer Cells to Auranofin
An anti-rheumatic drug could improve the prognosis for ovarian cancer patients exhibiting a deficiency of the DNA repair protein BRCA1, a study suggests.
Shingles Vaccine Helps Protect Older Patients with End-stage Renal Disease
Kaiser Permanente study advances knowledge about safety and effectiveness of vaccine commonly given to older adults.
AMRI Acquires Whitehouse Laboratories
Strategically extends AMRI's analytical offerings in rapidly expanding area of outsourcing services.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!