Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Will Cell Therapy Become a 'Third Pillar' of Medicine?

Published: Thursday, April 04, 2013
Last Updated: Thursday, April 04, 2013
Bookmark and Share
Treating patients with cells may one day become as common as it is now to treat the sick with drugs made from engineered proteins, antibodies or smaller chemicals.

“Today, biomedical science sits on the cusp of a revolution: the use of human and microbial cells as therapeutic entities,” said Wendell Lim, PhD, a UCSF professor and director of the UCSF Center for Systems and Synthetic Biology, and one of the co-authors of an article published online April 3 in Science Translational Medicine.

Cell therapies have the potential to address critical, unmet needs in the treatment of some of the deadliest diseases, including diabetes, cancer and inflammatory bowel diseases, the scientists said.

The reason, they said, is that cells can carry out functions that can’t be performed by small-molecule drugs produced by Big Pharma, or by targeted drugs developed by biotech firms in the wake of the genetic engineering revolution. For one, cells are adaptable. They can sense their surroundings better than today’s drugs and can vary their responses to better suit physiologic conditions.

Continued advances in cellular engineering could provide a framework, according to the co-authors, for the development of cellular therapies that are safe and that act predictably.

Joining Lim as co-authors of the Science Translational Medicine article are Michael Fischbach, PhD, assistant professor in the UCSF School of Pharmacy and an expert on the human microbiome, and Jeffrey Bluestone, PhD, executive vice chancellor and provost at UCSF and a leading diabetes and transplant rejection researcher.

The three also have organized a daylong symposium on the potential of cell therapy on April 12 supported by UCSF and the journal Science Translational Medicine, featuring talks and discussion by some of the nation’s leading scientists in stem cell therapy, immunotherapy and the human microbiome – the latter consisting primarily of the many hundreds of interacting species of bacteria that live within and upon us.

Advances in Cell Therapies

It has been more than four decades since cells were first used successfully in bone marrow and organ transplants, but the strategies envisioned today are more complex, involving manipulating cells based on new knowledge of how genes program their development and inner workings.

Cells of the immune system are among those that naturally carry out critical functions, but researchers are working on manipulating them to create better-targeted and more effective therapies. For instance, immune responses directed against cancer often are weak, so scientists are engineering and growing populations of immune cells that target specific molecules found on cancer cells. Already, remarkable recoveries from deadly leukemia have been credited to these new experimental treatments.

Bacterial cells also are showing promise for therapy. In recent years, scientists have come to appreciate that 90 percent of the cells living within and on our bodies are bacteria and that these microbes interact with our own cells and affect our health.

The potential of bacteria to treat disease has been demonstrated dramatically by the recent use of fecal transplants to introduce communities of health-promoting bacteria into patients with recurrent Clostridium difficile infections, a serious gastrointestinal condition that can be life-threatening. Combinations of bacteria that also are engineered to fight inflammation might prove to be even more effective in treating Crohn’s disease and other inflammatory bowel diseases, according to the UCSF scientists.

Other “killer apps” for cell therapies might include combinations of bacterial and human engineered cells. For instance, to control weight gain, gut bacteria might be deployed to convert certain carbohydrates into non-digestible forms, and also to signal engineered human cells lining the epithelial walls to trigger a program that sends a message to the brain that appetite has been satisfied.

Still, many engineering and regulatory challenges to cell therapy remain, the authors concede.

Scientists want to be able to reliably control many aspects of cells, including their activation, population growth, programmed death, migration to specific sites in the body, interactions and communications with other cells, production of small therapeutic molecules, and decision making.

While the complexity of cells makes many scientists leery of cell therapies, the authors said, this complexity might make cell therapies more predictable than other drugs, because complicated, naturally occurring feedback circuits tend to restrict cellular activity. Just as cells already use molecular circuits to act very precisely, researchers ought to be able develop a systematic understanding of the cell’s control modules to tune and reshape how cells behave.

“If small molecules and biologics are tools, then cells are carpenters — and architects and engineers as well,” Fischbach said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Deadliest Cancers May Respond to New Drug Treatment Strategy
Researchers have found a way to knock down cancers caused by a tumor-driving protein called “myc,” paving the way for clinical trials.
Monday, July 22, 2013
Simple Two-Drug Combination Proves Effective in Reducing Risk of Stroke
Phase 3 clinical trial in China, designed in partnership with UCSF, could change standard of care in U.S.
Thursday, June 27, 2013
Nanosponges can Remove Toxins from Bloodstream
Engineers have invented a “nanosponge” capable of safely removing a broad class of dangerous toxins from the bloodstream.
Tuesday, April 16, 2013
FDA Names Breast Cancer Drug a Breakthrough Therapy
An experimental drug being investigated for the treatment of advanced breast cancer by researchers at UCLA this week received breakthrough therapy designation from the U.S. FDA.
Monday, April 15, 2013
Transplanted Neural Stem Cells Produced Myelin
A Phase I clinical trial led by investigators from the University of California, San Francisco (UCSF) and sponsored by Stem Cells Inc., showed that neural stem cells successfully engrafted into the brains of patients and appear to have produced myelin.
Friday, October 12, 2012
Drug Combo more Effective for Breast Cancer Variant
Postmenopausal women with the most common type of metastatic breast cancer now have a new treatment option that lengthens their lives.
Friday, August 03, 2012
Computer Model Successfully Predicts Drug Side Effects
Research based on the similarity between a drugs chemical structures and those molecules known to cause side effects, according to a paper appearing online this week in the journal Nature.
Tuesday, June 12, 2012
Vision Loss in Eye Disease Slowed Using Novel Encapsulated Cell Therapy
Researchers found that long-term delivery of CNTF served to re-nourish the retina and stop or slow the loss of visual acuity caused by the disorder.
Wednesday, April 13, 2011
Scientific News
Investigational Malaria Vaccine Protects Healthy U.S. Adults
Researchers at NIH have found that the malaria vaccine protected a small number of healthy, malaria-naïve adults in the U.S. from infection for more than one year after immunization.
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
New Database for Sharing MS Clinical Trial Data
A new database containing nearly 2500 patient records from the placebo arms of nine multiple sclerosis (MS) clinical trials is now available for research by qualified investigators.
Study Finds Factors That May Influence Influenza Vaccine Effectiveness
Researchers at NIH have suggested that the long-held approach to predicting seasonal influenza vaccine effectiveness may need to be revisited.
BMS’s Opdivo Clinical Trial Shows Promise
Safety profile of the combination regimen from CheckMate -069 was consistent with previously reported studies and adverse events were managed using established safety algorithms.
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Cancer Drug Could Treat Blood Vessel Deformities
A drug currently being trialled in cancer patients could also be used to treat an often incurable condition that can cause painful blood vessel overgrowths inside the skin.
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
New Immunotherapy Trial for Type 1 Diabetes
The search for a treatment for Type 1 diabetes (T1D) - which affects over 400,000 people in the UK – will be stepped up with the start of a new phase one clinical trial at Guy’s Hospital in London.
Recruitment of First Patient in Clinical Study
Company has announced recruitment of first patient in clinical study assessing Visco-ease with Beatson Cancer Centre for the treatment of RIX.
Scroll Up
Scroll Down
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!