Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Identifies Potential Therapeutic Target for Incurable, Rare Type of Soft-Tissue Cancer

Published: Friday, December 27, 2013
Last Updated: Thursday, December 26, 2013
Bookmark and Share
UT Southwestern scientists study published online in Cell Reports.

A deadly, rare type of soft-tissue cancer may be completely eradicated simply by inhibiting a key protein involved in its growth, UT Southwestern Medical Center researchers report.

In the study, published online in Cell Reports, scientists found that inhibiting the action of a protein called BRD4 caused cancer cells to die in a mouse model of malignant peripheral nerve sheath tumors (MPNSTs).

“This study identifies a potential new therapeutic target to combat MPNST, an incurable type of cancer that is typically fatal,” said Dr. Lu Le, Assistant Professor of Dermatology at UT Southwestern and senior author of the study. “The findings also provide important insight into what causes these tumors to develop.”

MPNSTs are highly aggressive sarcomas that form around nerves. These tumors can develop sporadically, but about half of cases are in patients with a genetic disorder called neurofibromatosis type 1 (NF1) that affects 1 in 3,500 people. About 10 percent of NF1 patients will develop MPNST, which usually evolves from a benign but often large and disfiguring tumor called a plexiform neurofibroma.

Up to now, the preferred treatment for MPNST has been surgical removal, but that oftentimes is difficult or impossible due to the tumor’s location around nerves. Radiation and chemotherapy are other options, but their effectiveness is limited. The five-year survival rate for MPNST patients is about 50 percent.

By studying changes in cells as they evolved into cancerous MPNSTs, researchers in Dr. Le’s laboratory were able to determine that BRD4, a bromodomain protein that binds to DNA to regulate gene activation, is expressed at an unusually high level in MPNST cancer cells.

This action caused another protein called BCL-2 to keep cancer cells from dying. Alternately, when researchers inhibited BRD4 either genetically in the mice or pharmacologically by administering a compound called JQ1, the tumors shrank.

“These treatments suppressed tumor growth and caused the cancer cells to undergo apoptosis, or cell death. This is why BRD4 inhibition is exquisitely effective against MPNSTs and may represent a paradigm shift in therapy for these patients,” Dr. Le said.

The same class of drug used in the experiments is currently being evaluated in phase 1 and 2 trials for treatment of leukemia and a subtype of lung cancer. Meanwhile, UT Southwestern is working with a pharmaceutical company to develop a similar BRD4-inhibiting drug to launch a clinical trial for MPNST patients.

New drugs are desperately needed to treat MPNST and provide hope to NF1 patients at highest risk for this cancer, said Dr. Le, who also serves as Co-director of UT Southwestern’s Comprehensive Neurofibromatosis Clinic. The clinic offers neurofibromatosis patients access to the latest clinical trials and treatments.

Co-directed by Dr. Laura Klesse, Assistant Professor of Pediatrics, the clinic is part of the Harold C. Simmons Comprehensive Cancer Center and serves patients with all three types of hereditary neurofibromatosis, including the dominant NF1 type and rarer NF2 and Schwannomatosis forms.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Blocking DNA Repair Mechanisms Could Improve Brain Cancer Therapy
The findings were published April 7 in Nature Communications.
Saturday, April 12, 2014
Researchers Identify Novel Class of Drugs for Prostate Cancers
A new study on prostate cancer describes a novel class of drugs that interrupts critical signaling needed for prostate cancer cells to grow.
Wednesday, May 29, 2013
Rapid Bone Loss Possible Side Effect of Anti-Obesity Drug
Research from UT Southwestern Medical Center has raised concern about the safe use of fibroblast growth factor 21.
Tuesday, February 07, 2012
Experimental Drug Shows Promise Against Brain, Prostate Cancers, UT Southwestern Researchers Find
Study shows that drug attacked not only the bulk of the tumor cells but also the rare cancer stem cells responsible for cancer’s growth.
Wednesday, January 06, 2010
UT Southwestern Aids National Effort to Recruit Volunteers for Medical Research
A new national initiative will match volunteers who want to take part in medical research studies with the scientists who are leading those studies.
Thursday, November 19, 2009
UT Southwestern Researchers Use Drug-Radiation Combo to Eradicate Lung Cancer
Researchers have eliminated non-small cell lung cancer in mice by using an investigative drug called BEZ235 in combination with low-dose radiation.
Friday, November 06, 2009
NIH Funds New Virus Database at UT Southwestern
The $15.7 million contract will develop an open-access national online database and analysis resource center that will help scientists study and combat pathogenic viruses.
Wednesday, October 14, 2009
Gene Linked to Lupus Might Explain Gender Difference in Disease Risk
In an international human genetic study, researchers at UT Southwestern Medical Center have identified a gene linked to the autoimmune disease lupus, and its location on the X chromosome might help explain why females are 10 times more susceptible to the disease than males.
Monday, March 30, 2009
Fat-Free Diet Reduces Liver Fat in Fat-Free Mice, UT Southwestern Researchers Report
Researchers have uncovered crucial clues about a paradoxical disease in which patients with no body fat develop many health complications.
Thursday, February 05, 2009
Cancer Requires Support From Immune System to Develop, UT Southwestern Researchers Report
Tumors that grow around nerves in a rare genetic disease need cooperation from cells from the immune system in order to grow, reports a team of scientists, including researchers from UT Southwestern Medical Center.
Thursday, October 30, 2008
Gene Variant Boosts Risk of Fatty Liver Disease
Researchers at UT Southwestern Medical Center have found that individuals who carry a specific form of the gene PNPLA3 have more fat in their livers and a greater risk of developing liver inflammation.
Friday, September 26, 2008
Scientific News
Experimental MERS Vaccine Shows Promise in Animal Studies
A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines.
Young South African Women can Adhere to Daily PrEP Regimen as HIV Prevention
NIH-funded study finds men in Bangkok, Harlem also successful in taking daily dose.
Researchers Find Key Player in Diabetic Kidney Disease Through Power of Metabolomics
Discovery could lead to new and better diagnostic marker for chronic kidney disease.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Santhera Announces First Patient Dosing with Omigapil in CMD
Company announces full patient recruitment of CALLISTO study.
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
HIV Control Through Treatment Durably Prevents Heterosexual Transmission of Virus
NIH-funded trial proves suppressive antiretroviral therapy for HIV-infected people effective in protecting uninfected partners.
Adaptimmune's Novel Cancer Therapeutics Show Positive Clinical Trial Results
The company has announced that positive data from its Phase I/II study of its affinity enhanced T-cell receptor (TCR) therapeutic targeting the NY-ESO-1 cancer antigen in patients with multiple myeloma has been published.
Early Antiretroviral Therapy Prevents Non-AIDS Outcomes in HIV-infected People
NIH-supported findings illustrate manifold benefit of therapy.
Adaptimmune’s NY-ESO-1 TCR-engineered T-Cells Demonstrate Durable Persistence
Study has been published in Nature Medicine.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!