Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
Become a Member | Sign in
Home>News>This Article

Blocking DNA Repair Mechanisms Could Improve Brain Cancer Therapy

Published: Saturday, April 12, 2014
Last Updated: Saturday, April 12, 2014
Bookmark and Share
The findings were published April 7 in Nature Communications.

UT Southwestern Medical Center researchers have demonstrated in both cancer cell lines and in mice that blocking critical DNA repair mechanisms could improve the effectiveness of radiation therapy for highly fatal brain tumors called glioblastomas.

Radiation therapy causes double-strand breaks in DNA that must be repaired for tumors to keep growing. Scientists have long theorized that if they could find a way to block repairs from being made, they could prevent tumors from growing or at least slow down the growth, thereby extending patients’ survival. Blocking DNA repair is a particularly attractive strategy for treating glioblastomas, as these tumors are highly resistant to radiation therapy. In a study, UT Southwestern researchers demonstrated that the theory actually works in the context of glioblastomas.

“This work is informative because the findings show that blocking the repair of DNA double-strand breaks could be a viable option for improving radiation therapy of glioblastomas,” said Dr. Sandeep Burma, Associate Professor of Radiation Oncology in the division of Molecular Radiation Biology at UT Southwestern.

His lab works on understanding basic mechanisms by which DNA breaks are repaired, with the translational objective of improving cancer therapy with DNA damaging agents. Recent research from his lab has demonstrated how a cell makes the choice between two major pathways that are used to repair DNA breaks – non-homologous end joining (NHEJ) and homologous recombination (HR). His lab found that enzymes involved in cell division called cyclin-dependent kinases (CDKs) activate HR by phosphorylating a key protein, EXO1. In this manner, the use of HR is coupled to the cell division cycle, and this has important implications for cancer therapeutics.

While the above basic study describes how the cell chooses between NHEJ and HR, a translational study from the Burma lab demonstrates how blocking both repair pathways can improve radiotherapy of glioblastomas. Researchers in the lab first were able to show in glioblastoma cell lines that a drug called NVP-BEZ235, which is in clinical trials for other solid tumors, can also inhibit two key DNA repair enzymes, DNA-PKcs and ATM, which are crucial for NHEJ and HR, respectively. While the drug alone had limited effect, when combined with radiation therapy, the tumor cells could not quickly repair their DNA, stalling their growth.

While excited by the initial findings in cell lines, researchers remained cautious because previous efforts to identify DNA repair inhibitors had not succeeded when used in living models — mice with glioblastomas. Drugs developed to treat brain tumors also must cross what’s known as the blood-brain-barrier in living models.

But the NVP-BEZ235 drug could successfully cross the blood-brain-barrier, and when administered to mice with glioblastomas and combined with radiation, the tumor growth in mice was slowed and the mice survived far longer - up to 60 days compared to approximately 10 days with the drug or radiation therapy alone. These findings were published in the March 1 issue of Clinical Cancer Research.

“The consequence is striking,” said Dr. Burma. “If you irradiate the tumors, nothing much happens because they grow right through radiation. Give the drug alone, and again, nothing much happens. But when you give the two together, tumor growth is delayed significantly. The drug has a very striking synergistic effect when given with radiation.”

The combination effect is important because the standard therapy for glioblastomas in humans is radiation therapy, so finding a drug that improves the effectiveness of radiation therapy could have profound clinical importance eventually. For example, such drugs may permit lower doses of X-rays and gamma rays to be used for traditional therapies, thereby causing fewer side effects.

“Radiation is still the mainstay of therapy, so we have to have something that will work with the mainstay of therapy,” Dr. Burma said.

While the findings provide proof that the concept of “radio sensitizing” glioblastomas works in mouse models, additional research and clinical trials will be needed to demonstrate whether the combination of radiation with DNA repair inhibitors would be effective in humans, Dr. Burma cautioned.

“Double-strand DNA breaks are a double-edged sword,” he said. “On one hand, they cause cancer. On the other, we use ionizing radiation and chemotherapy to cause double-strand breaks to treat the disease.”

Another recent publication from his lab highlights this apparent paradox by demonstrating how radiation can actually trigger glioblastomas in mouse models. This research, supported by NASA, is focused on understanding cancer risks from particle radiation, the type faced by astronauts on deep-space missions and now being used in cutting-edge cancer therapies such as proton and carbon ion therapy.

Dr. Burma’s lab uses the high-tech facilities and large particle accelerator of the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York to generate heavy ions, which can be used to irradiate glioblastoma-prone mice to test both the cancer-inducing potential of particle radiation as well as its potential therapeutic use.

“Heavy particles cause dense tracks of damage, which are very hard to repair,” Dr. Burma noted. “With gamma or X-rays, which are used in medical therapy, the damage is diffuse and is repaired within a day. If you examine a mouse brain irradiated with heavy particles, the damage is repaired slowly and can last for months.”

These findings, published March 17 in Oncogene, suggest that glioblastoma risk from heavier particles is much higher compared to that from gamma or X-rays. This study is relevant to the medical field, since ionizing radiation, even low doses from CT scans, have been reported to increase the risk of brain tumors, Dr. Burma said.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Alzheimer’s Linked Protein Can Be Removed From Brain Without Hindering Memory, Learning
Researchers at UTSW have found that the mice can maintain their learning and memory when virtually all ApoE is removed from the brain but kept present in the liver to filter cholesterol.
Wednesday, October 05, 2016
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
Friday, September 30, 2016
UT Southwestern Targets Rising Rates of Kidney Cancer
Company has received $11 million in funding to the rising threat of kidney cancer.
Wednesday, August 03, 2016
Treatment of Common Prostate Cancer
Researchers at UTSW have found that the prostate cancer treatments suppress immune response and may promote relapse.
Friday, April 08, 2016
Structure of Crucial Enzyme Identified
Researchers at UTSW have determined the atomic structure of an enzyme that plays an essential role in cell division and better treatment of cancer.
Thursday, March 31, 2016
Pcsk9-Inhibitor Drug Class That Grew out of UTSW Research Becomes a Game-Changer for Patient
Researchers at UTSW have developed a new pcsk9-inhibitor drug class that effective in reduced the high cholesterol level.
Friday, February 26, 2016
UTSW Researchers Identifies How Drugs Alter Pancreatic Cancer Cells
The findings were published in Cell Reports.
Friday, January 22, 2016
Researchers Identify Process that Causes Chronic Neonatal Lung Disease
Study determines how the NLRP3 inflammasome activates the protein Interleukin 1 beta.
Saturday, January 16, 2016
Researchers Assist in Landmark NIH Study
Study shows intensive blood pressure management may save lives.
Saturday, September 12, 2015
Study Identifies Potential Therapeutic Target for Incurable, Rare Type of Soft-Tissue Cancer
UT Southwestern scientists study published online in Cell Reports.
Friday, December 27, 2013
Researchers Identify Novel Class of Drugs for Prostate Cancers
A new study on prostate cancer describes a novel class of drugs that interrupts critical signaling needed for prostate cancer cells to grow.
Wednesday, May 29, 2013
Rapid Bone Loss Possible Side Effect of Anti-Obesity Drug
Research from UT Southwestern Medical Center has raised concern about the safe use of fibroblast growth factor 21.
Tuesday, February 07, 2012
Experimental Drug Shows Promise Against Brain, Prostate Cancers, UT Southwestern Researchers Find
Study shows that drug attacked not only the bulk of the tumor cells but also the rare cancer stem cells responsible for cancer’s growth.
Wednesday, January 06, 2010
UT Southwestern Aids National Effort to Recruit Volunteers for Medical Research
A new national initiative will match volunteers who want to take part in medical research studies with the scientists who are leading those studies.
Thursday, November 19, 2009
UT Southwestern Researchers Use Drug-Radiation Combo to Eradicate Lung Cancer
Researchers have eliminated non-small cell lung cancer in mice by using an investigative drug called BEZ235 in combination with low-dose radiation.
Friday, November 06, 2009
Scientific News
Salford Lung Study - The First Real World Clinical Trial
In this podcast, we learn about the Salford Lung Study and its potential to revolutionize the way we assess new drugs and treatments around the world.
NIH Contributes to Global Effort to Prevent and Manage Lung Diseases
The large scale trial will measure health benefits of clean cookstoves.
Anti-Inflammatory Drugs Could Help Treat Depression
Anti-inflammatory drugs could be used to treat some cases of depression, which further implicates our immune system in mental health disorders.
Questioning the Safety of Selenium to Combat Cancer
Research indicates the need for change in practice as selenium supplements cannot be recommended for preventing colorectal cancer.
Scientists at NIH and Emory Achieve Sustained SIV Remission in Monkeys
The finding suggest that the immune systems of these animals are controlling SIV replication in the absence of antiretroviral therapy.
Painting the Way to Tumour Imaging
Tumour paint used in emergency surgery to aid cell identification for surgeons.
Anti-Cancer Drug Uses Tumour mRNA to Identify Responders
Phase I study of novel anti-cancer drug uses tumour mRNA expression to identify patients who will respond to the drug.
Targeting Estrogen Receptor Improves Survival in Breast Cancer
Trial finds estrogen receptor degrader significantly increases progression-free survival in patients with advanced breast cancer.
Clinical Trial Finds Medicine Program Alters Blood Serum
Meditation, yoga and vegetarian diet linked to decline in plasma metabolites associated with inflammation and cardiovascular disease risk.
Alzheimer’s Linked Protein Can Be Removed From Brain Without Hindering Memory, Learning
Researchers at UTSW have found that the mice can maintain their learning and memory when virtually all ApoE is removed from the brain but kept present in the liver to filter cholesterol.
Scroll Up
Scroll Down

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos