Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Transplanting Gene into Injured Hearts Creates Biological Pacemakers

Published: Tuesday, July 22, 2014
Last Updated: Tuesday, July 22, 2014
Bookmark and Share
Researchers develop first minimally invasive gene therapy procedure to treat heart rhythm disorders by transforming ordinary heart muscle cells into specialized rhythm-keeping cells, potentially eliminating future need for electronic pacemakers.

Cardiologists at the Cedars-Sinai Heart Institute have developed a minimally invasive gene transplant procedure that changes unspecialized heart cells into “biological pacemaker” cells that keep the heart steadily beating.

The laboratory animal research, published online and in print edition of the peer-reviewed journal Science Translational Medicine, is the result of a dozen years of research with the goal of developing biological treatments for patients with heart rhythm disorders who currently are treated with surgically implanted pacemakers. In the United States, an estimated 300,000 patients receive pacemakers every year.

“We have been able, for the first time, to create a biological pacemaker using minimally invasive methods and to show that the biological pacemaker supports the demands of daily life,” said Eduardo Marbán, MD, PhD, director of the Cedars-Sinai Heart Institute, who led the research team. “We also are the first to reprogram a heart cell in a living animal in order to effectively cure a disease.”

These laboratory findings could lead to clinical trials for humans who have heart rhythm disorders but who suffer side effects, such as infection of the leads that connect the device to the heart, from implanted mechanical pacemakers.

Eugenio Cingolani, MD, the director of the Heart Institute’s Cardiogenetics-Familial Arrhythmia Clinic who worked with Marbán on biological pacemaker research team, said that in the future, pacemaker cells also could help infants born with congenital heart block.

“Babies still in the womb cannot have a pacemaker, but we hope to work with fetal medicine specialists to create a life-saving catheter-based treatment for infants diagnosed with congenital heart block,” Cingolani said. “It is possible that one day, we might be able to save lives by replacing hardware with an injection of genes.”

“This work by Dr. Marbán and his team heralds a new era of gene therapy, in which genes are used not only to correct a deficiency disorder, but to actually turn one kind of cell into another type,” said Shlomo Melmed, dean of the Cedars-Sinai faculty and the Helene A. and Philip E. Hixson Distinguished Chair in Investigative Medicine.

In the study, laboratory pigs with complete heart block were injected with the gene called TBX18 during a minimally invasive catheter procedure. On the second day after the gene was delivered to the animals’ hearts, pigs who received the gene had significantly faster heartbeats than pigs who did not receive the gene. The stronger heartbeat persisted for the duration of the 14-day study.

“Originally, we thought that biological pacemaker cells could be a temporary bridge therapy for patients who had an infection in the implanted pacemaker area,” Marbán said. “These results show us that with more research, we might be able to develop a long-lasting biological treatment for patients.”

If future research is successful, Marbán said, the procedure could be ready for human clinical studies in about three years.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
NIH Study Shows No Benefit of Omega-3 Supplements for Cognitive Decline
Research was published in the Journal of the American Medical Association.
NIH Launches Human RSV Study
Study aims to understand infection in healthy adults to aid development of RSV medicines, vaccines.
Computerized Flexible Needles Prove Themselves in Biological Tissue
The advantage of the system is that you can avoid obstacles with the needles or critical tissues and that the system during the insertion of the needle in real time can adjust the path if, for example, the tissue deforms.
DARWIN 2 24-week Monotherapy Data in RA Confirm Previous Results
Safety profile in DARWIN 2 consistent with previous filgotinib RA studies.
Researchers Publish Landmark “Basket Study”
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have announced results from the first published basket study, a new form of clinical trial design that explores responses to drugs based on the specific mutations in patients’ tumors rather than where their cancer originated.
Agricultural Intervention Improves HIV Outcomes
A multifaceted farming intervention can reduce food insecurity while improving HIV outcomes in patients in Kenya, according to a randomized, controlled trial led by researchers at UC San Francisco.
Overdose of Vitamin D in Teenagers May Lead to Increased Cholesterol Levels
Dosing obese teens with vitamin D shows no benefits for their heart health or diabetes risk, and could have the unintended consequences of increasing cholesterol and fat-storing triglycerides. These are the latest findings in a series of Mayo Clinic studies in childhood obesity.
Phase 2 Trials Underway for New Single Dose Malaria Treatment
The new drug, which prevents the malaria parasite from reproducing and spreading, is now undergoing Phase II clinical trials in humans.
Promising Drug for Parkinson's Disease
A drug which has already been in use for decades to treat liver disease could be an effective treatment to slow down progression of Parkinson’s disease, scientists from the University of Sheffield have discovered.
Benefits of Early Antiretroviral Therapy in HIV Infection
Scientists have explored the clinical importance of starting treatment early in individuals suffering with HIV.
Scroll Up
Scroll Down
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!