Corporate Banner
Satellite Banner
Pharma Outsourcing
Scientific Community
Become a Member | Sign in
Home>News>This Article

First Gene Therapy Trial Launched for Heart Patients with Mechanical Pumps

Published: Tuesday, August 12, 2014
Last Updated: Tuesday, August 12, 2014
Bookmark and Share
Patient received new gene therapy at Harefield Hospital, London.

For the first time in the world, a patient with a mechanical heart pump has received a new gene therapy for heart failure at Harefield Hospital, London.

This is the start of a new clinical trial that will assess gene therapy for patients with heart pumps and provide detailed insight on its impact on the heart muscle.

Heart failure occurs when the heart no longer pumps blood effectively and it affects hundreds of thousands of people in the UK. Some individuals with an advanced heart failure can be fitted with a Left Ventricular Assist Device (LVAD), which supports the failing heart and aims to restore normal blood flow.

The LVAD is an electrically driven pump, moving the blood from the left ventricle into the main artery (aorta) so it can circulate the oxygen-rich blood to the rest of the body. Individuals with advanced heart failure who require a transplant may be fitted with an LVAD to keep them alive until a suitable donor heart becomes available. Currently there are around 100 to 150 people in the UK living with an LVAD.

The new trial, led by Imperial College London and funded by the British Heart Foundation (BHF) and Celladon Corporation, will explore whether this gene therapy could help these patients' hearts recover and potentially provide an alternative treatment. It is the first study of gene therapy in this patient group. The work was initiated with support from the Leducq Foundation.

This particular gene therapy is designed to increase levels of SERCA2a protein in heart muscle cells. SERCA2a plays an important role in heart muscle contraction. Genes are inserted into the heart muscle cells to increase the level of SERCA2a using a harmless engineered virus that is based on a naturally occurring virus. In this study the research team will take small biopsy samples of the heart muscle six months after treatment to measure if the gene is present, detectable and functional in the patients' hearts.

Professor Sian Harding, Professor of Cardiac Pharmacology and Head of the BHF Centre of Regenerative Medicine in Imperial College London, who helped develop the treatment, said: "We will be using state-of-the art methods to gain detailed information on how and where the gene therapy takes effect, which will potentially help us develop and improve the therapy. It's important to remember that the therapy is not correcting a gene defect. We are working much more downstream, which means that no matter what the cause of the heart failure, the therapy should be equally beneficial for patients whether their heart problems stem from genes, lifestyle or the environment or a mixture of all of these."

The research team plan to evaluate how this therapy works in 24 patients with advanced heart failure who are fitted with LVADs. Of the patients enrolled in the study, 16 will be treated with the gene therapy and eight will be treated with a placebo. Dr Nick Banner, the consultant cardiologist at Harefield Hospital who carried out the first gene therapy infusion, said: "Advanced heart failure is a progressive condition that results in a poor quality of life and shortened life expectancy. The best treatment currently available is a heart transplant but the shortage of donor organs in the UK means that many patients will die on the transplant waiting list.

"LVADs can keep some patients alive long enough for a donor heart to become available. The rationale for this study is to investigate the effectiveness of a new form of therapy, which might in the future be a viable alternative to transplantation. This study will help us better understand whether the concept of repairing a heart with gene therapy might be possible, even in patients with advanced heart failure. The patients taking part in the trial will have regular tests to see if there are any improvements in heart function."

Lee Adams, 37, from Hertfordshire, has been living with an LVAD for over two and a half years and is on the waiting list for a heart transplant. He is the first patient in the world with a mechanical heart pump to receive this new gene therapy. The LVAD keeping him alive is always connected to an external power supply via a lead through his abdomen. He explained: "It took some getting used to living with an LVAD. You can't just jump in the bath or the shower and it's difficult sleeping whilst being attached to it. Everywhere I go I have to carry the power supply and spare batteries in a backpack."

Lee is hopeful about the outcome but careful not to get too carried away. He said: "Of course the best thing that could happen would be for my heart function to show signs of improvement and for the gene therapy to prove to be a 'miracle cure' for myself and other patients. But I'm not building up my hopes too much because, for all I know, I might have had the placebo. If it does prove to be successful it would be exciting for patients who need a transplant but end up on the waiting list for a long time because of the shortage of donors."

The new study will be the first to evaluate whether gene therapy is delivered to the heart muscle and if its effectiveness is compromised in patients with antibodies to the virus, which delivers the gene.

Previously patients with an antibody to the naturally occurring version of the virus (about 50-60 per cent) have been excluded from a larger ongoing CUPID2 trial, which is investigating the benefits of gene therapy in people with heart failure but no LVAD device. Patients were excluded because it was believed possessing the antibody would render the virus less effective at inserting the gene into the heart muscle. However the actual effect of the antibody has never been explored in patients. This new study will evaluate the effectiveness of the gene therapy in both those patients who have the antibody and those patients without the antibody in order to make a comparison.

"We have adapted the wild virus by removing the viral genes and replacing them with the treatment SERCA gene, so the virus acts like a biological courier to deliver our treatment gene," explained Dr Alex Lyon, BHF Senior Lecturer, honorary consultant cardiologist at the Royal Brompton & Harefield NHS Foundation Trust and trial lead investigator from the National Heart & Lung Institute at Imperial College London. "This particular virus is advantageous because it is not known to cause any human disease. However this means many people have been exposed to the virus without developing symptoms and therefore possess antibodies. If we exclude this group, then potentially a substantial number of heart failure patients would not be eligible to receive this therapy. If we demonstrate that the antibody does not block the delivery of gene therapy, many more patients could benefit."

The 24 patients in the trial, recruited from Harefield Hospital, London and Papworth Hospital, Cambridgeshire, will receive gene therapy. Six months later a sample of tissue or biopsy will be taken from the heart muscle and examined in laboratories in Imperial College London. This will provide an exploratory analysis of how much of the SERCA2a gene and protein are actually getting into the heart muscle. For those patients on the trial who subsequently undergo a transplant the research team will also then be able to examine the whole heart. This will allow an investigation into how the therapy affects heart function and the underlying mechanisms such as electrical currents, calcium levels and structure of individual cells.

This trial complements the larger ongoing CUPID2 trial, also funded by Celladon Corporation, which is investigating the benefits of gene therapy in 250 people with less advanced heart failure from Europe and the USA, including 14 patients from the UK. Data from the CUPID2 trial is expected in April, 2015.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Therapy for Cystic Fibrosis Shows Encouraging Trial Results
A therapy that replaces the faulty gene responsible for cystic fibrosis in patients' lungs has produced encouraging results in a major UK trial.
Friday, July 03, 2015
Alcoholic Hepatitis Treatments Fail to Keep Patients Alive
The study is published in the New England Journal of Medicine.
Friday, May 01, 2015
Study Finds Potential New Target to Treat Asthma Attacks Brought on by Colds
Results suggest that IL-25 could be a target for possible treatments to prevent asthma attacks.
Tuesday, October 07, 2014
Stem Cells Show Promise for Stroke in Pilot Study
Findings are published in the journal Stem Cells Translational Medicine.
Saturday, August 09, 2014
Statins Slow the Progression of Advanced MS in Clinical Trial
The work is published in the Lancet.
Saturday, March 29, 2014
Statins Slow the Progression of Advanced MS in Clinical Trial
The work is published in the Lancet.
Friday, March 21, 2014
New Drug Treatment Reduces Chronic Pain Following Shingles
New drug EMA401 reduce pain and did not cause any serious side effects.
Friday, February 07, 2014
Malaria Drug Target Raises Hopes for New Treatments
Scientists identify way to stop malaria parasites from multiplying.
Thursday, December 26, 2013
Badgers Ultimately Responsible for Around Half of TB in Cattle, Study Estimates
The findings are published in the journal PLOS Currents: Outbreaks.
Tuesday, November 05, 2013
Multi-drug Pills Help People Stick to Heart Disease Prevention Regimens
Findings are published in the Journal of the American Medical Association.
Friday, September 27, 2013
£73m Powerhouse of Biomedical Research Opens at Imperial College London
Designed to expand and accelerate the translation of scientific discoveries.
Wednesday, November 21, 2012
Cystic Fibrosis Gene Therapy Programme Gets Green Light with Public Funding
Gene therapy trial for CF to begin in March.
Friday, March 16, 2012
One-a-day Heart Polypill to be Tested in new International Trial
Researchers to explore whether a new, low cost, one-a-day combined 'polypill' could reduce the risk of heart attacks and related problems.
Monday, May 17, 2010
University Research Contributes £45 Billion a Year to the UK Economy, According to new Impact Study
A new economic impact assessment of university research suggests that the £3.5 billion a year currently spent on publicly funded research generates an additional annual output of £45 billion in UK companies.
Monday, March 15, 2010
HIV Vaccine Failure Probably Caused By Virus Used, Says New Research
Researchers say, failure was probably caused by the immune system reacting to the virus 'shell' used to transmit the therapy around the body.
Tuesday, November 17, 2009
Scientific News
Making It Personal
Cancer vaccine linked to increased immune response against leukemia cells.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
BioCision Forms MedCision
The new company will focus on technologies for the management and automation of vital clinical processes.
First New HIV Vaccine Study for Seven Years Begins
South Africa hosts historic clinical trial of experimental HIV vaccine aiming to safely prevent HIV infection.
Study to Assess Shorter-Duration Antibiotics in Children
Physicians plan a clinical trial to evaluate whether short course anti-biotics are effective at treating CAP in children.
Cancer Gene Predicts Treatment Response in Leukaemia
Study indicates the patients suffering from a lethal for of acute myeloid leukemia may live longer when receiving milder chemotherapy drugs.
Injectable Biologic Therapy Reduces Triglycerides
Study finds first-of-its-kind therapy promising for patients with high triglycerides, cholesterol.
Testing Zika Vaccine in Humans Begins
The first of five planned clinical trials to test ZPIV vaccine in humans has begun.
Combination Therapy Improved Chemoresistance in Ovarian Cancer
The study demonstrates how an existing class of targeted therapies could be used to potentiate the tumor suppression induced by cisplatin.
Gene Therapy for Blistering Skin Disease Shows Promise
Grafting genetically altered skin onto patients’ chronic wounds marks the first time skin-based gene therapy has been demonstrated to be safe and effective in humans.
Scroll Up
Scroll Down

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos