Corporate Banner
Satellite Banner
Chemical Process Scale Up
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Flow Reactor Delivers Highly Reproducible Bromination

Published: Friday, March 22, 2013
Last Updated: Friday, March 22, 2013
Bookmark and Share
Offers excellent control of both temperature and mixing using a proprietary mixer chip.

Uniqsis has announced an application note that describes a continuous flow methodology for electrophilic bromination that offers excellent control of both temperature and mixing using a proprietary mixer chip, leading to a highly reproducible outcome.

Electrophilic bromination is a useful reaction in organic synthesis. However, when molecular bromine is used as the electrophile, under acidic conditions, it can be difficult to control both the exothermic addition and to prevent subsequent bis-bromination of the desired monobrominated product.

In application note 21 - the authors demonstrate that using a static mixer chip on a FlowSyn flow chemistry system to control both mixing and temperature - bromination becomes a titration and the reaction can be performed rapidly under elevated temperatures.

The bromination could be performed in a coil reactor however the short reaction time of 30 seconds at 70°C makes it better suited to implementation in a chip.

The authors suggest how the chip based bromination methodology could be straightforwardly scaled to 28g / hour by connecting a 5 ml HT-PTFE coil reactor in line with the mixer chip and increasing the flow rate to 13.2 ml/min.

The Uniqsis FlowSyn™ is a compact integrated continuous flow reactor system designed for easy, safe and efficient operation.

The FlowSyn™ range includes models for performing single or multiple homogeneous or heterogeneous reactions, either manually or automatically.

The range of chemistries that can be explored with Uniqsis’ integrated and modular flow chemistry systems grows ever wider and is exemplified by the growing number of applications published both in the academic press and in Uniqsis’ own application notes.

Typical examples of flow chemistry applications include hydrogenation, nitration, bromination, metalation, molecular rearrangements and synthesis of compounds suchas dihyropyridine, indole, pyrazole, quinolinone and benzimidazole.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cambridge Reactor Design and Uniqsis Announce Joint Marketing Agreement
The companies have entered into a joint marketing agreement for the Gastropod gas introduction module and the Polar Bear low temperature reactor, for flow chemistry applications.
Monday, April 18, 2011
Flow Chemistry Company Moves Ahead
Significant developments have been reported by Uniqsis to develop a new concept in flow chemistry, leading to the launch of the FlowSyn™ Continuous Flow Reactor at the end of last year.
Monday, January 14, 2008
Microreaction System Nears Launch
Uniqsis Ltd. has announced major progress towards launching FlowSyn™ later in the year.
Wednesday, August 15, 2007
Scientific News
Porphyrins as Catalysts in Scalable Organic Reactions
This review covers the most relevant scalable porphyrin-catalysed procedures, showing how these compounds represent broad applications in chemistry.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
Injecting New Life into Old Antibiotics
A new fully synthetic way to make a class of antibiotics called macrolides from simple building blocks is set to open up a new front in the fight against antimicrobial drug resistance.
New Cancer Fighters Emerge From Lab
Rice University lab simplifies total synthesis of anti-cancer agent.
Pharmacy on Demand
New, portable system can be configured to produce different drugs.
Safer, Cheaper, Greener and More Efficient System for Organic Synthesis
The new medium not only supports organic synthesis it also produces considerably higher yields of product than pure organic solvents.
Countless New, Cleaner Uses of Methane
Chemists have demonstrated the potential to use methane as a versatile chemical building block with which to make more complex molecules.
New Way to Control Chemical Reactions
Scientists have harnessed static electricity to control chemical reactions for the first time, in a breakthrough that could bring cleaner industry and cheaper nanotechnology.
Tiny 'Flasks' Speed Up Chemical Reactions
Self-assembling nanosphere clusters may improve everything from drug synthesis to drug delivery.
The Manufacturing Challenges of Nanotechnology
Head of NanoManufacturing at the Department of Engineering’s Institute for Manufacturing (IfM) Dr Michaël de Volder explains why manufacturing carbon nanotubes is so difficult – and so important.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!