Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Sequential Genomic Analysis Links Gene with Human Kidney Aging

Published: Tuesday, October 27, 2009
Last Updated: Tuesday, October 27, 2009
Bookmark and Share
The new approach that combines sequential transcriptional profiling and eQTL mapping, can help find other genetic associations.

A gene has been associated with human kidney aging, according to researchers from Stanford University, the National Institute on Aging, the MedStar Research Institute, and the HudsonAlpha Institute for Biotechnology.

In work published on October 16 in the open-access journal PLoS Genetics, the investigators claim that their approach, which combines sequential transcriptional profiling and eQTL mapping, can be applied to any phenotype of interest to help find other genetic associations.

Kidneys age at different rates, such that some people show little or no effects of kidney aging whereas others show rapid functional decline. Determining genetic factors associated with different rates of kidney aging contributes to the understanding of molecular mechanisms underlying the human aging process. Although family studies have shown that genes play a role in longevity, it has proven difficult to identify the specific genetic variants involved, until now.

The researchers, led by Dr. Stuart Kim, first used genome-wide transcriptional profiling to determine that 630 genes change expression with age in kidney tissue. Next, they determined that 101 of these age-regulated genes contain DNA variations among individuals that associate with gene expression level. These 101 genes were tested for association with kidney aging in a combined analysis of two populations selected to study normal aging: the Baltimore Longitudinal Study of Aging and the InCHIANTI Study.

One gene that encodes an extracellular matrix protein (MMP20) was revealed to be significantly associated with kidney aging, providing the first gene association with kidney aging.

Because data from both populations were combined in the kidney aging association analysis, the researchers stress that this finding needs to be replicated in additional populations. As more aging genes are discovered and confirmed, the particular genetic variants belonging to a person could one day be combined to better predict the aging trajectory of the kidney.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Wednesday, October 07, 2015
Delivering Missing Protein Heals Damaged Hearts in Animals
Researchers have discovered that a particular protein, Fstl1, plays a key role in regenerating dead heart-muscle cells.
Tuesday, September 22, 2015
Key Mechanism in Gene Expression Discovered
RNA polymerase II makes life possible by expressing genes. Now, a team of Stanford biologists, chemists and applied physicists has observed it at work in real time.
Thursday, September 17, 2015
X-ray Laser Experiment Could Help in Designing Drugs for Brain Disorders
Scientists found that when two protein structures in the brain join up, they act as an amplifier for a slight increase in calcium concentration, triggering a gunshot-like release of neurotransmitters from one neuron to another.
Monday, August 24, 2015
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Thursday, July 30, 2015
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Monday, July 27, 2015
A Protein's Novel Role In Several Types Of Cancers Discovered
Stanford ChEM-H scientists are helping to develop a novel cancer therapy based on a new finding of a protein that inadvertently promotes cancer growth.
Friday, February 27, 2015
Stanford Chemists Take Step Toward Solving Mystery of How Enzymes Work
Steven Boxer and his students have found that the electrostatic field within an enzyme accounts for the lion's share of its success.
Wednesday, December 24, 2014
Protein Complex May Play Role in Preventing Many Forms of Cancer, Study Shows
Researchers at the Stanford University School of Medicine have identified a group of proteins that are mutated in about one-fifth of all human cancers.
Tuesday, May 07, 2013
Scientists Identify Two Molecules that Affect Brain Plasticity in Mice
Stanford researchers have identified a set of molecular brakes that stabilize the developing brain’s circuitry.
Tuesday, December 01, 2009
Stanford Researchers Find Protein Targets for Potential Treatment of Multiple Sclerosis
Stanford researchers have identified therapy targets that could lead to personalized treatments for MS patients at each phase of the illness.
Monday, February 18, 2008
Scientific News
Analyzing Protein Structures in Their Native Environment
Enhanced-sensitivity NMR could reveal new clues to how proteins fold.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
New Protein Cleanup Factors Found to Control Bacterial Growth
UMass Amherst researchers characterize previously mysterious proteolysis factors.
Proteins with ALS, Cancer Role Do Not Assume a Regular Shape
Our cells contain proteins, essential to functions like protein creation and DNA repair but also involved in forms of ALS and cancer, that never take a characteristic shape, a new study shows.
Key to Natural Detoxifier’s Reactivity Discovered
Results have implications for health, drug design and chemical synthesis.
New Protein Found in Immune Cells
Immunobiologists from the University of Freiburg discover Kidins220/ARMS in B cells and demonstrate its functions.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
How a Molecular Motor Untangles Protein
Diseases such as Alzheimer’s, Parkinson’s and prion diseases, all involve “tangled” proteins.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
How Cell Growth Triggers Cell Division
Researchers in Jan Skotheim's lab have discovered a previously unknown mechanism that controls how large cells grow, an insight that could one day provide insight into attacking diseases such as cancer.
Scroll Up
Scroll Down
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos